تعداد نشریات | 31 |
تعداد شمارهها | 737 |
تعداد مقالات | 6,928 |
تعداد مشاهده مقاله | 9,873,510 |
تعداد دریافت فایل اصل مقاله | 6,694,196 |
Filtration, asymptotic $\sigma$-prime divisors and superficial elements | ||
Journal of Algebra and Related Topics | ||
دوره 9، شماره 1، شهریور 2021، صفحه 159-167 اصل مقاله (301.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2021.17418.1221 | ||
نویسنده | ||
K. A. Essan* | ||
UFR Sciences Sociales, Universite Peleforo GON COULIBALY, Korhogo, Cote d'Ivoire | ||
چکیده | ||
Let $(A,\mathfrak{M})$ be a Noetherian local ring with infinite residue field $A/ \mathfrak{M}$ and $I$ be a $\mathfrak{M}$-primary ideal of $A$. Let $f = (I_{n})_{n\in \mathbb{N}}$ be a good filtration on $A$ such that $I_{1}$ containing $I$. Let $\sigma$ be a semi-prime operation in the set of ideals of $A$. Let $l\geq 1$ be an integer and $(f^{(l)})_{\sigma} = \sigma(I_{n+l}):\sigma(I_{n})$ for all large integers $n$ and $\rho^{f}_{\sigma}(A)= min \big\{ n\in \mathbb{N} \ | \ \sigma(I_{l})=(f^{(l)})_{\sigma}, for \ all \ l\geq n \big\}$. Here we show that, if $I$ contains an $\sigma(f)$-superficial element, then $\sigma(I_{l+1}):I_{1}=\sigma(I_{l})$ for all $l \geq \rho^{f}_{\sigma}(A)$. We suppose that $P$ is a prime ideal of $A$ and there exists a semi-prime operation $\widehat{\sigma}_{P}$ in the set of ideals of $A_{P}$ such that $\widehat{\sigma}_{P}(JA_{P})=\sigma(J)A_{P}$, for all ideal $J$ of $A$. Hence $Ass_{A}\big( A / \sigma(I_{l}) \big) \subseteq Ass_{A}\big( A / \sigma(I_{l+1}) \big)$, for all $l \geq \rho^{f}_{\sigma}(A)$. | ||
کلیدواژهها | ||
Noetherian ring؛ good filtration؛ semi-prime operation؛ prime divisors؛ superficial elements | ||
سایر فایل های مرتبط با مقاله
|
||
آمار تعداد مشاهده مقاله: 663 تعداد دریافت فایل اصل مقاله: 538 |