Journal of Algebra and Related Topics

Vol. 9, No 1, (2021), pp 159-167

FILTRATION, ASYMPTOTIC σ-PRIME DIVISORS AND SUPERFICIAL ELEMENTS

K.A. ESSAN

Abstract

Let (A, \mathfrak{M}) be a Noetherian local ring with infinite residue field A / \mathfrak{M} and I be a \mathfrak{M}-primary ideal of A. Let $f=$ $\left(I_{n}\right)_{n \in \mathbb{N}}$ be a good filtration on A such that I_{1} containing I. Let σ be a semi-prime operation in the set of ideals of A. Let $l \geq 1$ be an integer and $\left(f^{(l)}\right)_{\sigma}=\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)$ for all large integers n and $\rho_{\sigma}^{f}(A)=\min \left\{n \in \mathbb{N} \mid \sigma\left(I_{l}\right)=\left(f^{(l)}\right)_{\sigma}\right.$, for all $\left.l \geq n\right\}$. Here we show that, if I contains an $\sigma(f)$-superficial element, then $\sigma\left(I_{l+1}\right): I_{1}=\sigma\left(I_{l}\right)$ for all $l \geq \rho_{\sigma}^{f}(A)$. We suppose that P is a prime ideal of A and there exists a semi-prime operation $\widehat{\sigma}_{P}$ in the set of ideals of A_{P} such that $\widehat{\sigma}_{P}\left(J A_{P}\right)=\sigma(J) A_{P}$, for all ideal J of A. Hence $A s s_{A}\left(A / \sigma\left(I_{l}\right)\right) \subseteq A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$, for all $l \geq \rho_{\sigma}^{f}(A)$.

1. Introduction

Let A be a Noetherian ring, $k \geq 1$ be an integer, I be an ideal of A and σ be a semi-prime operation in the set of ideals of A such that I is an ideal containing a $A / \sigma\left(I^{k+1}\right)$-regular element. [2] proves in it's lemma 1 that there exists an integer $m_{0}>k$ such that $\sigma\left(I^{m_{0}+1}\right):_{A}$ $I=\sigma\left(I^{m_{0}}\right)$. However to show that the sequence $\left\{\operatorname{Ass}\left(A / \sigma\left(I^{n}\right)\right)\right\}_{n>0}$ is increasing from a certain rank, we assumed that the relationship $\sigma\left(I^{n+1}\right):_{A} I=\sigma\left(I^{n}\right)$ is right for all large n (see [2, Theorem 5]). [4] reveals conditions under which the relationship $(\circledast) \sigma\left(I^{n+1}\right):_{A} I=\sigma\left(I^{n}\right)$

[^0]holds from a certain rank.
The section 3 of this paper is found within the framework when generalizing the condition of the relation (\circledast) to good filtrations. We show that, if $f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ is a good filtration on A, then the sequence $\left\{\operatorname{Ass}\left(A / \sigma\left(I_{n}\right)\right)\right\}_{n \geq 0}$ is increasing from a certain rank.
In section 4, we suppose that $\left(\sigma\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ is a I-good filtration, $\Delta=$ $\left\{I^{n} \mid n \in \mathbb{N}-\{0\}\right\}$ and $J_{\Delta}=\bigcup_{K \in \Delta}(J K: K)$ is the Δ-closure of J, for all ideal J of A, and $\left(I^{k}\right)_{\sigma}=\sigma\left(I^{n+k}\right): \sigma\left(I^{n}\right)$, with $k \geq 1$ and $n \gg 0$ be two integers. The Proposition 4.1 shows that there exists an integer $n_{0} \geq 1$ such that $\left(I^{k}\right)_{\sigma}=\left(\sigma\left(I^{k}\right)\right)_{\Delta}$ for all $k \geq n_{0}$.

2. Preliminary

What we will develop in this paper is an extension of [4]. That's why, we remember some definitions and useful properties of [4] for the rest.
Let A be a commutative and unitary ring.
(1) A filtration on A is a sequence $f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ of ideals of A such that
$I_{0}=A, I_{n+1} \subseteq I_{n}$ for all $n \in \mathbb{Z}$ and $I_{p} I_{q} \subseteq I_{p+q}$ for all $p, q \in \mathbb{Z}$. It follows that $I_{n}=A$, for all $n \leq 0$.
(2) Let I be an ideal of A, a filtration $f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ on A is I-good if
i) $I . I_{n} \subseteq I_{n+1} \forall n \geq 0$ and ii) $\exists n_{0} \in \mathbb{Z}$ tel que $\forall n \geq n_{0}$, $I . I_{n}=I_{n+1}$. Then $I^{n} I_{n_{0}}=I_{n_{0}+n}, \forall n \geq 1 . f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ is said good if it is I_{1}-good.
(3) For all integers $l \geq 1$, let $f^{(l)}=\left(I_{n l}\right)_{n \in \mathbb{Z}} \cdot f^{(l)}$ is a filtration on A. It's the extracted filtration from order l of f.
(4) Let $\mathfrak{I}(A)$ be the set of ideals of A. Suppose the map $\sigma: \mathfrak{I}(A) \longrightarrow$ $\mathfrak{I}(A)$ and the following properties:
(a) $I \subseteq \sigma(I)$,
(b) $\sigma(\sigma(I))=\sigma(I)$,
(c) If $I \subseteq J$, then $\sigma(I) \subseteq \sigma(J)$,
(d) $\sigma(I) \sigma(J) \subseteq \sigma(I J)$,
(e) $\sigma(b I)=b \sigma(I)$,
for all $I, J \in \mathfrak{I}(A)$ and b a regular element of A. Then, σ is a closure operation if (a)-(c) hold for all $I, J \in \mathfrak{I}(A)$. It is a
semi-prime operation if (a)-(d) hold for all $I, J \in \mathfrak{I}(A)$. Finally it is a prime operation if (a)-(e) hold for all $I, J \in \mathfrak{I}(A)$ and b a regular element of A.
(5) If σ is a semi-prime operation, then $\sigma[\sigma(I) \sigma(J)]=\sigma(I J)$, for all $I, J \in \mathfrak{I}(A)$.
(6) For all $I \in \Im(A), \sigma(I)$ is the σ-closure of I.
(7) If $f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ is a filtration on A and σ is a semi-prime operation in $\mathfrak{I}(A)$, then $\sigma(f)=\left(\sigma\left(I_{n}\right)\right)_{n \in \mathbb{Z}}$ is a filtration on A and is the σ-closure of f.
(8) Suppose that A is a Noetherian ring and the filtration $f=$ $\left(I_{n}\right)_{n \in \mathbb{Z}}$ is good, then:
(a) There exists $n_{0} \geq 1$ such that for all $n \geq n_{0},\left\{\sigma\left(I_{n+1}\right):_{A}\right.$ $\left.\sigma\left(I_{n}\right)\right\}_{n \in \mathbb{N}}$ is an increasing sequence, hence it stabilizes. Let's pose $f_{\sigma}=\sigma\left(I_{n+1}\right):_{A} \sigma\left(I_{n}\right)=\sigma\left(I_{n+1}\right): \sigma\left(I_{n}\right)$ for all large n, (see [3, proposition 4.1]).
(b) If $l \geq 1$ is an integer, then it exists $n_{0} \geq 1$ such that for all $n \geq n_{0},\left\{\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)\right\}_{n \in \mathbb{N}}$ is an increasing sequence, hence it stabilizes and we have $\left(f^{(l)}\right)_{\sigma}=\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)$ for all large n, (see [3, proposition 4.2]). Indeed, let n and l be two integers and let $a \in \sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)$. Then $a \sigma\left(I_{n}\right) \subseteq \sigma\left(I_{n+l}\right)$ and $a \sigma\left(I_{1}\right) \sigma\left(I_{n}\right) \subseteq \sigma\left(I_{1}\right) \sigma\left(I_{n+l}\right)$. Since σ is semi-prime operation and $\sigma\left[\sigma\left(I_{1}\right) \sigma\left(I_{n}\right)\right]=\sigma\left(I_{1} I_{n}\right)$, we have $a \sigma\left(I_{1} I_{n}\right) \subseteq \sigma\left(I_{n+1+l}\right)$. We know that f is good, then it exists an integer $n_{0} \geq 1$ such that for all $n \geq n_{0}, I_{1} I_{n}=I_{n+1}$. Thus $a \sigma\left(I_{n+1}\right) \subseteq \sigma\left(I_{n+1+l}\right)$ and $a \in \sigma\left(I_{n+1+l}\right): \sigma\left(I_{n+1}\right)$. Therefore $\left\{\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)\right\}_{n \in \mathbb{N}}$ is an increasing sequence for all $n \geq n_{0}$. And it stabilizes for some large enough integers n because A is a Noetherian ring. Let n_{1} be this integer such that for all $n \geq n_{1}, \sigma\left(I_{n+l}\right)$: $\sigma\left(I_{n}\right)=\sigma\left(I_{n_{1}+l}\right): \sigma\left(I_{n_{1}}\right)$. For all $n \geq n_{1}$ we have $l n \geq n_{1}$, then $\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)=\sigma\left(I_{l n+l}\right): \sigma\left(I_{l n}\right)=\sigma\left(I_{l(n+1)}\right): \sigma\left(I_{l n}\right)$. Since $I_{l(n+1)}$ and $I_{l n}$ are two consecutive terms of the filtration $f^{(l)}$, thus we can write $\left(f^{(l)}\right)_{\sigma}=\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right)$ for all $n \geq n_{1}$.
(9) Let (A, \mathfrak{M}) be a Noetherian local ring with infinite residue field A / \mathfrak{M}. Let I be a \mathfrak{M}-primary ideal of A and $f=\left(I_{n}\right)_{n \in \mathbb{Z}}$ be a I-good filtration on A. An element $x \in I$ is f-superficial if there exists an integer n_{0} such that $\left(I_{n+1}:_{A} x\right) \cap I_{n_{0}}=I_{n}$, for all $n \geq n_{0}$.

3. Asymptotic prime σ-Divisors and $\sigma(f)$-SUPERFICIAL ELEMENTS

Throughout this section, A is a Noetherian ring and $f=\left(I_{n}\right)_{n \in \mathbb{N}}$ is a good filtration on A, with I_{n} a nonzero ideal for all $n \geq 1$. Let σ be a semi-prime operation in the set of ideals of A and $\sigma(f)=\left(\sigma\left(I_{n}\right)\right)_{n \in \mathbb{N}}$ be the σ-closure of f.

Lemma 3.1. Let $k, r \geq 1$ be two integers. Let $f=\left(I_{n}\right)_{n \in \mathbb{N}}$ be a filtration on A such that I_{r} containing a $A / \sigma\left(I_{k+r}\right)$-regular element. Then there exists an integer $m_{0} \geq k$ such that $\sigma\left(I_{m_{0}+r}\right): I_{r}=\sigma\left(I_{m_{0}}\right)$.

Proof. Let $m \geq 1$ be an integer. Let $a \in \sigma\left(I_{m}\right)$, then $a I_{r} \subseteq \sigma\left(I_{m+r}\right)$. Hence $a \in \sigma\left(I_{m+r}\right): I_{r}$. Thus $\sigma\left(I_{m}\right) \subseteq \sigma\left(I_{m+r}\right): I_{r}$, for all $m \geq 1$. Conversely, suppose for all $m \geq k, \sigma\left(I_{m}\right) \varsubsetneqq \sigma\left(I_{m+r}\right): I_{r}$. In particular for $m=k+r$ we have $\sigma\left(I_{k+r}\right) \nsubseteq \sigma\left(I_{k+2 r}\right): I_{r}$. Let $a \in \sigma\left(I_{k+2 r}\right): I_{r}$ and $a \notin \sigma\left(I_{k+r}\right)$. We have, $a \notin \sigma\left(I_{k+r}\right)$ implies that $a+\sigma\left(I_{k+r}\right)$ is different from the class of zero modulo $\sigma\left(I_{k+r}\right)$. Since $a \in \sigma\left(I_{k+2 r}\right): I_{r}$, we have $a I_{r} \subseteq \sigma\left(I_{k+r}\right)$. Thus $\bar{a} I_{r}=0+\sigma\left(I_{k+r}\right)$. Since I_{r} contains a $A / \sigma\left(I_{k+r}\right)$-regular element, then $a \in \sigma\left(I_{k+r}\right)$, which is absurd. Hence there exists an integer $m_{0} \geq k$ such that $\sigma\left(I_{m_{0}+r}\right): I_{r}=\sigma\left(I_{m_{0}}\right)$.

Proposition 3.2. i) f_{σ} is σ-closed.
ii) Let l be an large enough integer such that $\sigma\left(I_{l+r}\right): I_{r}=\sigma\left(I_{l}\right)$, for all $r \geq 1$. Then $\sigma\left(I_{l}\right)=\left(f^{(l)}\right)_{\sigma}$.

Proof. i) Since σ is semi-prime operation in the set of ideals of A and f_{σ} is an ideal of A, then $f_{\sigma} \subseteq \sigma\left(f_{\sigma}\right)$. Conversely, $\sigma\left(f_{\sigma}\right)=\sigma\left(\sigma\left(I_{n+1}\right)\right.$: $\left.\sigma\left(I_{n}\right)\right) \subseteq \sigma\left(I_{n+1}\right): \sigma\left(I_{n}\right)=f_{\sigma}$ for all large enough n, (see [2, proposition 3]). Hence $f_{\sigma}=\sigma\left(f_{\sigma}\right)$.
ii) Suppose that l is a large enough integer such that $\sigma\left(I_{l+r}\right): I_{r}=$ $\sigma\left(I_{l}\right)$, for all $r \geq 1$. Then $\left(f^{(l)}\right)_{\sigma}=\sigma\left(I_{n+l}\right): \sigma\left(I_{n}\right) \subseteq \sigma\left(I_{n+l}\right): I_{n}=$ $\sigma\left(I_{l}\right)$, for all large enough n. Therefore $\left(f^{(l)}\right)_{\sigma} \subseteq \sigma\left(I_{l}\right)$. We also have by [3, proposition 4.3], $\sigma\left(I_{l}\right) \subseteq\left(f^{(l)}\right)_{\sigma}$. Thus $\sigma\left(I_{l}\right)=\left(f^{(l)}\right)_{\sigma}$.

Proposition 3.3. Let $f=\left(I_{n}\right)_{n \in \mathbb{N}}$ be a good filtration on A. Then $\left\{\left(f^{(n)}\right)_{\sigma}\right\}_{n \in \mathbb{N}}$ is a filtration on A.

Proof. i) $\left(f^{(0)}\right)_{\sigma}=\sigma\left(I_{n}\right): \sigma\left(I_{n}\right)=A$ for all n. ii) Let $n \geq 1$ an integer and $a \in\left(f^{(n)}\right)_{\sigma}=\sigma\left(I_{k+n}\right): \sigma\left(I_{k}\right)$ for all large enough k. Therefore $a \in \sigma\left(I_{k+n-1}\right): \sigma\left(I_{k}\right)=\left(f^{(n-1)}\right)_{\sigma}$, for all large enough k, we have the decreasing of the sequence. iii) By [3, proposition 4.3], we have $\left(f^{(p)}\right)_{\sigma}\left(f^{(q)}\right)_{\sigma} \subseteq\left(f^{(p+q)}\right)_{\sigma}$, for all integer $p, q \geq 0$. Then $\left\{\left(f^{(n)}\right)_{\sigma}\right\}_{n \in \mathbb{N}}$ is a filtration on A.

For the rest of this paper we assume that (A, \mathfrak{M}) is a Noetherian local ring with infinite residue field A / \mathfrak{M} and I is a \mathfrak{M}-primary ideal of A. Let $f=\left(I_{n}\right)_{n \in \mathbb{N}}$ be a good filtration on A such that I_{1} containing I.

Definition 3.4. An element x of I is said to be $\sigma(f)$-superficial, if there exists an integer $n_{0} \geq 0$ such that $\left(\sigma\left(I_{n+1}\right):_{A} x\right) \cap \sigma\left(I_{n_{0}}\right)=\sigma\left(I_{n}\right)$, for all $n \geq n_{0}$.

Proposition 3.5. Let $x \in I$ a $\sigma(f)$-superficial element. For all integer $n \geq 1$ we have:
i) $\left(f^{(n+1)}\right)_{\sigma}: x=\left(f^{(n)}\right)_{\sigma}$.
ii) $(x) \cap\left(f^{(n+1)}\right)_{\sigma}=x\left(f^{(n)}\right)_{\sigma}$.

Proof. Let $n \geq 1$ be an integer.
i) If $a \in\left(f^{(n+1)}\right)_{\sigma}: x$, then $a x \in\left(f^{(n+1)}\right)_{\sigma}=\sigma\left(I_{k+n+1}\right): \sigma\left(I_{k}\right)$, for all $k \gg 0$. therefore $a \sigma\left(I_{k}\right) \subseteq \sigma\left(I_{k+n+1}\right): x$. Since x is $\sigma(f)$-superficial, then there exists k_{0} such that $\left(\sigma\left(I_{m+1}\right): x\right) \cap \sigma\left(I_{k_{0}}\right)=\sigma\left(I_{m}\right)$, for all $m \geq k_{0}$. Therefore for some large enough k we have $a \sigma\left(I_{k}\right) \subseteq$ $\sigma\left(I_{k+n+1}\right): x$ and $a \sigma\left(I_{k}\right) \subseteq \sigma\left(I_{k_{0}}\right)$. Thus $a \sigma\left(I_{k}\right) \subseteq\left(\sigma\left(I_{k+n+1}\right): x\right) \cap$ $\sigma\left(I_{k_{0}}\right)=\sigma\left(I_{k+n}\right)$ with $k+n \geq k_{0}$. Then $a \sigma\left(I_{k}\right) \subseteq \sigma\left(I_{k+n}\right)$, thus $a \in$ $\sigma\left(I_{k+n}\right): \sigma\left(I_{k}\right)=\left(f^{(n)}\right)_{\sigma}$, for all large enough k. Conversely, suppose $I \subseteq I_{1}$, therefore $x\left(f^{(n)}\right)_{\sigma} \subseteq I_{1}\left(f^{(n)}\right)_{\sigma} \subseteq \sigma\left(I_{1}\right)\left(f^{(n)}\right)_{\sigma} \subseteq\left(f^{(1)}\right)_{\sigma}\left(f^{(n)}\right)_{\sigma} \subseteq$ $\left(f^{(n+1)}\right)_{\sigma}$ (See [3, proposition 4.3]). Then $\left(f^{(n)}\right)_{\sigma} \subseteq\left(f^{(n+1)}\right)_{\sigma}: x$. It follows that $\left(f^{(n+1)}\right)_{\sigma}: x=\left(f^{(n)}\right)_{\sigma}$ for all integer $n \geq 1$.
ii) We have a consequence of i). Indeed, let $n \geq 1$ be an integer and $z \in(x) \cap\left(f^{(n+1)}\right)_{\sigma}$. Then there exists $a \in A$ such that $z=a x \in\left(f^{(n+1)}\right)_{\sigma}$. It follows that $a \in\left(f^{(n+1)}\right)_{\sigma}: x=\left(f^{(n)}\right)_{\sigma}$ and $z=a x \in x\left(f^{(n)}\right)_{\sigma}$. Conversely $x\left(f^{(n)}\right)_{\sigma} \subseteq I_{1}\left(f^{(n)}\right)_{\sigma} \subseteq\left(f^{(n+1)}\right)_{\sigma}$ and $x\left(f^{(n)}\right)_{\sigma} \subseteq(x)$. Then $x\left(f^{(n)}\right)_{\sigma} \subseteq(x) \cap\left(f^{(n+1)}\right)_{\sigma}$. Hence $(x) \cap\left(f^{(n+1)}\right)_{\sigma}=$ $x\left(f^{(n)}\right)_{\sigma}$, for all integer $n \geq 1$.

By the Proposition 3.2, under certain conditions, we have shown that for some large enough integer $l, \sigma\left(I_{l}\right)=\left(f^{(l)}\right)_{\sigma}$. Let $\rho_{\sigma}^{f}(A)=\min \{n \in$
$\mathbb{N} \mid \sigma\left(I_{l}\right)=\left(f^{(l)}\right)_{\sigma}$, for all $\left.l \geq n\right\}$. The existence of such $\rho_{\sigma}^{f}(A)$ is proved in [8].

Proposition 3.6. Let $x \in I$ be a $\sigma(f)$-superficial element. Then for all $l \geq \rho_{\sigma}^{f}(A), \sigma\left(I_{l+1}\right): x=\sigma\left(I_{l}\right)$ and $(x) \cap \sigma\left(I_{l+1}\right)=x \sigma\left(I_{l}\right)$.

Proof. The proof is easy by Proposition 3.5.

Proposition 3.7. Let $l \geq 1$ be an integer. If $x \in I$ is $A / \sigma\left(I_{l+1}\right)$-regular element, then $\sigma\left(I_{l+r}\right): x^{r}=\sigma\left(I_{l+1}\right): x$, for all $r \geq 1$.

Proof. Let $l \geq 1$ et $r>1$ be two integers such that $a \in \sigma\left(I_{l+r}\right): x^{r}$, then $a x^{r} \in \sigma\left(I_{l+r}\right) \subseteq \sigma\left(I_{l+1}\right)$. hence $x\left(a x^{r-1}+\sigma\left(I_{l+1}\right)\right)=\overline{0}$ (class of zero modulo $\sigma\left(I_{l+1}\right)$). Since x is $A / \sigma\left(I_{l+1}\right)$-regular, then $a x^{r-1} \in \sigma\left(I_{l+1}\right)$. By taking the process, we show that $a \in \sigma\left(I_{l+1}\right): x$. Inversely, if $a \in \sigma\left(I_{l+1}\right): x, a x^{r} \in I_{1}^{r-1} \sigma\left(I_{l+1}\right) \subseteq \sigma\left(I_{l+r}\right)$. Thus $a \in \sigma\left(I_{l+r}\right): x^{r}$. It follows that $\sigma\left(I_{l+r}\right): x^{r}=\sigma\left(I_{l+1}\right): x$, for all $r \geq 1$.

Corollary 3.8. Let $x \in I$ be a $\sigma(f)$-superficial element and let $l \geq$ $\rho_{\sigma}^{f}(A)$ be an integer. If x is $A / \sigma\left(I_{l+1}\right)$-regular, then $\sigma\left(I_{l+r}\right): x^{r}=\sigma\left(I_{l}\right)$ for all integer $r \geq 1$.

Proof. It's a consequence of Propositions 3.6 and 3.7.

Let P be a prime ideal of the Noetherian ring A. Let \sum_{A} be the set of all semi-prime operations σ for which $\widehat{\sigma}_{P}$, such that $\widehat{\sigma}_{P}\left(J A_{P}\right)=\sigma(J) A_{P}$ for all ideal J of A, are well-defined et are semi-prime operations on the set of all ideals of A_{P}. The example of section 3 of [3] shows that \sum_{A} is not empty. Then for the hypothesis of theorem 3.9-ii) we will restrict us on the set \sum_{A}.

Theorem 3.9. Let $x \in I$ be a $\sigma(f)$-superficial element and let $l \geq$ $\rho_{\sigma}^{f}(A)$ be an integer. We have:
i) $\sigma\left(I_{l+1}\right): I_{1}=\sigma\left(I_{l}\right)$.
ii) Suppose that for a prime ideal P of A, there exists a semi-prime operation $\widehat{\sigma}_{P}$ in the set of ideals of A_{P} such that $\widehat{\sigma}_{P}\left(J A_{P}\right)=\sigma(J) A_{P}$, for all ideal J of A. Then $A s s_{A}\left(A / \sigma\left(I_{l}\right)\right) \subseteq A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$.

Proof. i) Let $l \geq \rho_{\sigma}^{f}(A)$ and $a \in \sigma\left(I_{l+1}\right): I_{1}$, then $a x \in \sigma\left(I_{l+1}\right)$. Hence $a \in \sigma\left(I_{l+1}\right): x=\sigma\left(I_{l}\right)$. The reverse is easy.
ii) Let $l \geq \rho_{\sigma}^{f}(A)$ and P be a prime ideal of A such that $P \in A s s_{A}\left(A / \sigma\left(I_{l}\right)\right)$.
(a) Suppose that A is a local ring with maximal ideal P. There exists $a \in A$ such that $a \notin \sigma\left(I_{l}\right)$ and $P=\sigma\left(I_{l}\right): a$. Then $a P \subseteq \sigma\left(I_{l}\right)$ and
$a I_{1} P \subseteq \sigma\left(I_{l+1}\right)$. Hence $P \subseteq \sigma\left(I_{l+1}\right): a I_{1}$. We have $a I_{1} \nsubseteq \sigma\left(I_{l+1}\right)$, otherwise $a \in \sigma\left(I_{l+1}\right): I_{1}=\sigma\left(I_{l}\right)$ (See (i)) and $a \in \sigma\left(I_{l}\right)$ which is absurd. Thus, since P is maximal, we have $P=\sigma\left(I_{l+1}\right): a I_{1}$. Let $\left(b_{1}, \ldots, b_{r}\right)$ be a finite system of generators of I_{1}. Then $a I_{1}=\left(b_{1} a, \ldots, b_{r} a\right)$ and $P=\sigma\left(I_{l+1}\right):\left(b_{1} a, \ldots, b_{r} a\right)=\bigcap_{i=1}^{r}\left(\sigma\left(I_{l+1}\right): b_{i} a\right)$. That is, $P \subseteq$ $\sigma\left(I_{l+1}\right): b_{i} a$ for every $i=1, \ldots, r$. There exists $k \in\{1, \ldots, r\}$ such that $a \notin \sigma\left(I_{l+1}\right): b_{k}$. Otherwise, if for every $i=1, \ldots, r a \in \sigma\left(I_{l+1}\right): b_{i}$, then $a \in \bigcap_{i=1}^{r}\left(\sigma\left(I_{l+1}\right): b_{i}\right)=\sigma\left(I_{l+1}\right):\left(b_{1}, \ldots, b_{r}\right)=\sigma\left(I_{l+1}\right): I_{1}=\sigma\left(I_{l}\right)$ (See (i)) and $a \in \sigma\left(I_{l}\right)$ which is absurd. Therefore $P=\sigma\left(I_{l+1}\right): b_{k} a$ and $P \in A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$. Then $A s s_{A}\left(A / \sigma\left(I_{l}\right)\right) \subseteq A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$ for all $l \geq \rho_{\sigma}^{f}(A)$.
(b) Suppose that A is not a local ring with maximal ideal P. We know that A_{P} is a local ring with maximal ideal $P A_{P}$. Let $\widehat{\sigma}_{P}$ be the semiprime operation in the set of all ideals of A_{P} such that $\widehat{\sigma}_{P}\left(J A_{P}\right)=$ $\sigma(J) A_{P}$, for all ideal J of A. By i) we have $\sigma\left(I_{l+1}\right): I_{1}=\sigma\left(I_{l}\right)$, then $\sigma\left(I_{l+1}\right) A_{P}: I_{1} A_{P}=\sigma\left(I_{l}\right) A_{P}$ and $\widehat{\sigma}_{P}\left(I_{l+1} A_{P}\right): I_{1} A=\widehat{\sigma}_{P}\left(I_{l} A_{P}\right)$, for every $l \geq \rho_{\sigma}^{f}(A)$. By (a) we have

$$
\operatorname{Ass}_{A_{P}}\left(A_{P} / \widehat{\sigma}_{P}\left(I_{l} A_{P}\right)\right) \subseteq \operatorname{Ass}_{A_{P}}\left(A_{P} / \widehat{\sigma}_{P}\left(I_{l+1} A_{P}\right)\right)
$$

If $P \in A s s_{A}\left(A / \sigma\left(I_{l}\right)\right)$, then $P A_{P} \in A_{A_{A}}\left(A_{P} / \widehat{\sigma}_{P}\left(I_{l} A_{P}\right)\right)$. It follows that $P A_{P} \in A s s_{A_{P}}\left(A_{P} / \widehat{\sigma}_{P}\left(I_{l+1} A_{P}\right)\right)=A s s_{A_{P}}\left(A_{P} / \sigma\left(I_{l+1}\right) A_{P}\right)$. Hence $P \in A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$ and $A s s_{A}\left(A / \sigma\left(I_{l}\right)\right) \subseteq A s s_{A}\left(A / \sigma\left(I_{l+1}\right)\right)$ for all $l \geq \rho_{\sigma}^{f}(A)$.

4. Δ-CLOSURE AND $\left(I^{k}\right)_{\sigma}$

Let A be a Noetherian ring, I be a nonzero ideal of A and σ be a semi-prime operation in the set of ideals of A. Let $\left(\sigma\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ be the σ closure of the filtration $\left(I^{n}\right)_{n \in \mathbb{N}}$. Let Δ be a nonempty, multiplicatively closed set of nonzero ideals in A and $J_{\Delta}=\bigcup_{K \in \Delta}(J K: K)$ be the Δ closure of J, for all ideal J of A. We consider that $\left(I^{k}\right)_{\sigma}=\sigma\left(I^{n+k}\right)$: $\sigma\left(I^{n}\right)$, with $k \geq 1$ and $n \gg 0$ be two integers. The following proposition shows the conditions under which equality $\left(I^{k}\right)_{\sigma}=\left(\sigma\left(I^{k}\right)\right)_{\Delta}$ holds.

Proposition 4.1. If the filtration $\left(\sigma\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ is I-good and $\Delta=\left\{I^{n} \mid n \in\right.$ $\mathbb{N}-\{0\}\}$, then there exists an integer $n_{0} \geq 1$ such that $\left(I^{k}\right)_{\sigma}=\left(\sigma\left(I^{k}\right)\right)_{\Delta}$ for all $k \geq n_{0}$.

Proof. Let $k \geq 1$ be an integer and $x \in\left(\sigma\left(I^{k}\right)\right)_{\Delta}=\bigcup_{K \in \Delta}\left(\sigma\left(I^{k}\right) K\right.$: $K)$. Since $\Delta=\left\{I^{n}, \quad n \in \mathbb{N}-\{0\}\right\}$, there exists an integer $l \geq 1$ such that $x I^{l} \subseteq \sigma\left(I^{k}\right) I^{l}$. Since σ is a semi-prime operation, $x \sigma\left(I^{l}\right) \subseteq$
$\sigma\left(I^{k+l}\right)$. Thus $x \in\left(I^{k}\right)_{\sigma}$, since $\left\{\sigma\left(I^{n+k}\right): \sigma\left(I^{n}\right)\right\}_{n \in \mathbb{N}}$ is an increasing sequence (see[3]). Conversely, let $x \in\left(I^{k}\right)_{\sigma}$ and $x \notin\left(\sigma\left(I^{k}\right)\right)_{\Delta}$, it follows that $x I^{n} \subseteq x \sigma\left(I^{n}\right) \subseteq \sigma\left(I^{k+n}\right)$ for $n \gg 0$ and $x I^{m} \nsubseteq I^{m} \sigma\left(I^{k}\right)$ for all integer $m \geq 1$. Since the filtration $\left(\sigma\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ is I-good, there exists an integer $n_{0} \geq 1$ such that $I^{n} \sigma\left(I^{s}\right)=\sigma\left(I^{s+n}\right)$ for all $s \geq n_{0}$ and $n \geq 1$. Therefore, for $k \geq n_{0}$ and $n \gg 0$ we have $x I^{n} \nsubseteq \sigma\left(I^{k+n}\right)$ and $x I^{n} \subseteq \sigma\left(I^{k+n}\right)$, which is absurd. Hence the equality.

Example 4.2. In [9] the authors show that, if I is an ideal of an analytically unramified semi-local ring, then there exists a positive integer k such that $\left(I^{n+k}\right)^{\prime}=I^{n}\left(I^{k}\right)^{\prime}$ for all integers $n \geq 0$, with $\left(I^{n}\right)^{\prime}$ is the integral closure of the ideal I^{n}. In others words, in such ring the filtration $\left(\left(I^{n}\right)^{\prime}\right)_{n \in \mathbb{N}}$ is I-good.

Let σ and δ be two closure operations such that $\sigma(J) \subseteq \delta(J)$, for all ideals J. We notice that $\delta(I) \subseteq \delta[\sigma(I)] \subseteq \delta[\delta(I)]=\delta(I)$ and $\delta(I) \subseteq \sigma[\delta(I)] \subseteq \delta[\delta(I)]=\delta(I)$ for all ideals I. Therefore $\delta(I)=$ $\delta[\sigma(I)]=\sigma[\delta(I)]$, for all ideals I. Hence the following corollary is a consequence of the Proposition 4.1.

Corollary 4.3. Let σ be a semi-prime operation comparable to the Δ closure operation such that the filtration $\left(\sigma\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ is I-good. Then $\left(I^{k}\right)_{\sigma}=\sigma\left(\left(I^{k}\right)_{\Delta}\right)$.

Acknowledgments

The author would like to thank the referee for careful reading.

References

1. M. Brodmann, Asymptotic stability of $\operatorname{Ass}\left(M / I^{n} M\right)$, Proc. Amer. Math. Soc., 74 (1979), 16-18.
2. K.A. Essan, Opérations de cloture sur les sous-modules dún module, Annales Math 'e matiques Africaines 3 (2012), 89-100.
3. K.A. Essan, Filtrations, operations de cloture et la suite $\left\{\operatorname{Ass}\left(A /\left(f^{(k)}\right)_{\sigma}\right)\right\}_{k}$, Annales Mathematiques Africaines, 4 (2013), 117-124.
4. K.A. Essan, A. Abdoulaye, D. Kamano, E.D Ak 'e k 'e, σ-sporadic prime ideals and superficial elements, J. Algebra Relat. Topics, (2) 5 (2017), 35-45.
5. D. Kirby, Closure operations on ideals and submodules, J. London Maths Soc., 44 (1969), 283-291.
6. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
7. S. McAdam, Primes Associated to an Ideal, Contemporary Mathematics, Amer. Math. Soc, 102, 1989.
8. T.J. Puthenpurakal and Fahed Zulfeqarr, Ratliff-Rush filtrations associated with ideals and modules in a noetherian ring, Journal of Algebra, (2) 311 (2007), 551-583.
9. M. Sakuma and H. Okuyama, A criterion for analytically unramification of a local ring, J. Gakugei Tokushima Univ, 15 (1966), 36-38.

K.A. Essan

UFR Sciences Sociales, Universite Peleforo GON COULIBALY, Korhogo, Cote d'Ivoire
Email: ambroisessan@yahoo.fr

[^0]: MSC(2010): Primary: 13A15; Secondary: 13C99
 Keywords: Noetherian ring, good filtration, semi-prime operation, prime divisors, superficial elements.
 Received: 17 August 2020 , Accepted: 3 June 2021.

