تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,245,966 |
تعداد دریافت فایل اصل مقاله | 6,899,731 |
Nearrings of functions without identity determined by a single subgroup | ||
Journal of Algebra and Related Topics | ||
دوره 9، شماره 1، شهریور 2021، صفحه 121-129 اصل مقاله (257.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2021.15730.1190 | ||
نویسندگان | ||
G. Alan Cannon* 1؛ V. Enlow2 | ||
1Department of Mathematics, Southeastern Louisiana University, SLU 10687 Hammond, LA 70402, USA | ||
2Department of Mathematics, Southeastern Louisiana University Hammond, LA 70402, USA | ||
چکیده | ||
Let $(G, +)$ be a finite group, written additively with identity 0, but not necessarily abelian, and let $H$ be a nonzero, proper subgroup of $G$. Then the set $M = \{f : G \to G\ |\ f(G) \subseteq H \ \hbox{and}\ f(0) = 0 \}$ is a right, zero-symmetric nearring under pointwise addition and function composition. We find necessary and sufficient conditions for $M$ to be a ring and determine all ideals of $M$, the center of $M$, and the distributive elements of $M$. | ||
کلیدواژهها | ||
Abelian؛ distributive؛ center؛ ideal؛ zero-symmetric | ||
آمار تعداد مشاهده مقاله: 652 تعداد دریافت فایل اصل مقاله: 617 |