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NEARRINGS OF FUNCTIONS WITHOUT IDENTITY
DETERMINED BY A SINGLE SUBGROUP

G. ALAN CANNON∗ AND V. ENLOW

Abstract. Let (G,+) be a finite group, written additively with
identity 0, but not necessarily abelian, and let H be a nonzero,
proper subgroup of G. Then the set M = {f : G → G | f(G) ⊆
H and f(0) = 0} is a right, zero-symmetric nearring under point-
wise addition and function composition. We find necessary and
sufficient conditions for M to be a ring and determine all ideals of
M , the center of M , and the distributive elements of M .

1. Introduction

A right nearring is a triple (N,+, ·) where (N,+) is a group, writ-
ten additively with identity 0, but not necessarily abelian, (N, ·) is a
semigroup, and the right distributive law holds. Thus, nearrings are
generalizations of rings. A nearring N is zero-symmetric if 0n = n0 = 0
for all n ∈ N . For more information on nearrings, see [7], [11], and [12].

Natural examples of nearrings occur when considering sets of func-
tions under addition and composition. Numerous papers have inves-
tigated various nearrings of functions, including [2], [3], [4], [5], and
[6]. A special class of nearrings of functions, the centralizer nearrings,
have received particular attention since every nearring with identity is
isomorphic to a centralizer nearring ([7], Theorem 14.3). Studies of
centralizer nearrings can be found in [1], [9], and [10].

We continue the investigation of nearrings of functions. Let (G,+)
be a finite group with identity 0, though not necessarily abelian, and
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let H be a nontrivial, proper subgroup of G. Define M = {f : G →
G | f(G) ⊆ H and f(0) = 0}. Then M is a zero-symmetric nearring
without identity under function addition and composition. We inves-
tigate the internal structure of this nearring. We determine when M
is abelian and distributive, identify all ideals of M , and characterize
when M is a ring.

We let 0 denote the identity element in (G,+) and the zero function
from G to G, but its use should be obvious from the context. We also
let EndH denote the set of endomorphisms of H. Most of the results
of this paper appear in [8].

2. General Results

In this section we investigate basic properties of the nearring M =
{f : G→ G | f(G) ⊆ H and f(0) = 0}. We first determine when M is
abelian, i.e., when f1 + f2 = f2 + f1 for all f1, f2 ∈M .

Theorem 2.1. The nearring M is abelian if and only if the subgroup
H is abelian.

Proof. Assume M is abelian. Thus for all f1, f2 ∈M and every g ∈ G,
f1(g) + f2(g) = (f1 + f2)(g) = (f2 + f1)(g) = f2(g) + f1(g).

Fix 0 6= g ∈ G and let h1, h2 ∈ H. For i = 1, 2, define fi(x) ={
hi if x = g
0 if x 6= g

. Then f1, f2 ∈ M and h1 + h2 = f1(g) + f2(g) =

f2(g) + f1(g) = h2 + h1 and H is abelian.
Now assume H is abelian. Let f1, f2 ∈ M and g ∈ G. Then

f1(g), f2(g) ∈ H and (f1 + f2)(g) = f1(g) + f2(g) = f2(g) + f1(g) =
(f2 + f1)(g). Hence f1 + f2 = f2 + f1 and M is abelian. Therefore M
is abelian if and only if H is abelian. �

Next, we identify the distributive elements of M and find necessary
and sufficient conditions for M to be a ring. First we need some defi-
nitions.

Definition 2.2. Let N be a nearring. We define Nd = {n ∈ N | n(x+
y) = nx+ny for all x, y ∈ N}, the set of all (left) distributive elements
of N . If N = Nd, we say that N is a distributive nearring.

Theorem 2.3. Let Md be the set of distributive elements in M . Then
f ∈Md if and only if f |H ∈ EndH.

Proof. Assume f ∈Md. As in the proof of Theorem 2.1, fix 0 6= g ∈ G

and let h1, h2 ∈ H. For i = 1, 2, define fi(x) =

{
hi if x = g
0 if x 6= g

. Then

f1, f2 ∈ M . Since f ∈ Md, we have f(h1 + h2) = f(f1(g) + f2(g)) =
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[f(f1 + f2)](g) = [f ◦ f1 + f ◦ f2](g) = (f ◦ f1)(g) + (f ◦ f2)(g) =
f(f1(g)) + f(f2(g)) = f(h1) + f(h2). Thus f |H ∈ EndH.

Now assume f ∈ M such that f |H ∈ EndH. Let n1, n2 ∈ M and
g ∈ G. Thus n1(g), n2(g) ∈ H. It follows that [f(n1 + n2)](g) =
f(n1(g) + n2(g)) = f(n1(g)) + f(n2(g)) = (f ◦ n1)(g) + (f ◦ n2)(g) =
[f ◦ n1 + f ◦ n2](g). Hence f ∈ Md. We conclude that f ∈ Md if and
only if f |H ∈ EndH. �

Theorem 2.4. The following are equivalent:

(i) M is a ring;
(ii) M is distributive;

(iii) |H| = 2.

Proof. Condition (i) clearly implies condition (ii). We prove (ii) implies
(iii) via the contrapositive. So assume |H| ≥ 3, say 0, a, b ∈ H with
all three elements distinct. Fix 0 6= g ∈ G. Define the functions

f1(x) =

 b if x = b
a+ b if x = a+ b

0 else
, f2(x) =

{
a if x = g
0 if x 6= g

, and f3(x) ={
b if x = g
0 if x 6= g

. So f1, f2, f3 ∈M . Then [f1 ◦ (f2 + f3)](g) = f1(f2(g) +

f3(g)) = f1(a + b) = a + b 6= b = 0 + b = f1(a) + f1(b) = f1(f2(g)) +
f1(f3(g)) = [f1 ◦ f2](g) + [f1 ◦ f3](g), and M is not distributive. Thus,
if |H| 6= 2, then M is not distributive, and (ii) implies (iii).

Now assume |H| = 2, say H = {0, h}. Note that for any f ∈M and
g ∈ G, f(g) ∈ H and f(g) + f(g) = 0. In particular, h + h = 0. We
show that M is distributive. To this end, let f1, f2, f3 ∈M and g ∈ G.

If f2(g) = 0 = f3(g), then [f1 ◦ (f2 + f3)](g) = f1(f2(g) + f3(g)) =
f1(0 + 0) = f1(0) = 0 = 0 + 0 = f1(0) + f1(0) = f1(f2(g)) + f1(f3(g)) =
[f1 ◦ f2](g) + [f1 ◦ f3](g).

If f2(g) = h = f3(g), then [f1 ◦ (f2 + f3)](g) = f1(f2(g) + f3(g)) =
f1(h + h) = f1(0) = 0 = f1(h) + f1(h) = f1(f2(g)) + f1(f3(g)) =
[f1 ◦ f2](g) + [f1 ◦ f3](g).

If f2(g) = 0 and f3(g) = h, then [f1 ◦ (f2 + f3)](g) = f1(f2(g) +
f3(g)) = f1(0 + h) = f1(h) = 0 + f1(h) = f1(0) + f1(h) = f1(f2(g)) +
f1(f3(g)) = [f1 ◦ f2](g) + [f1 ◦ f3](g).

If f2(g) = h and f3(g) = 0, the proof is similiar to that of the
previous case. In all cases, [f1 ◦ (f2 + f3)](g) = [f1 ◦ f2](g) + [f1 ◦ f3](g),
and M is distributive. Hence, (iii) implies (ii).

Again assume |H| = 2. Then H is abelian. It follows that M is
abelian from Theorem 2.1. From above, M is also distributive. There-
fore M is a distributive, abelian nearring, making M a ring. Thus (iii)
implies (i) and the proof is complete. �
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For the final result of this section, we characterize the center of M .

Definition 2.5. The center of a nearring N is C(N) = {c ∈ N | cn =
nc for all n ∈ N}.

In general, the center of a nearring N is not a subnearring of N (See
[2] and [6]). For the nearring M , the center is always a subnearring of
M .

Theorem 2.6. The center of M is C(M) = {0}. Therefore C(M) is
a subnearring of M .

Proof. Let c ∈ C(M). Fix g 6∈ H and let h ∈ H. Define f1(x) ={
h if x = g
0 if x 6= g

. Then f1 ∈M . Since c(g) ∈ H and g 6∈ H, we conclude

that c(g) 6= g. Thus 0 = f1(c(g)) = c(f1(g)) = c(h). Since h ∈ H is
arbitrary, C(M) ⊆ {f ∈M |f(H) = 0}.

Now define f2(x) =

{
x if x ∈ H
0 if x 6∈ H . Then f2 ∈ M . Let g 6∈ H.

Thus c(g) ∈ H and 0 = c(0) = c(f2(g)) = f2(c(g)) = c(g). Since
g 6∈ H is arbitrary, C(M) ⊆ {f ∈ M | f(G\H) = 0}. It follows that
C(M) ⊆ {f ∈ M | f(H) = 0} ∩ {f ∈ M | f(G\H) = 0} = {0}. Since
M is zero-symmetric, it is clear that 0 ∈ C(M). Thus C(M) = {0}
and C(M) is a subnearring of M . �

3. Ideals

In this section, we characterize all ideals of M .

Definition 3.1. Let N be a nearring and let (I,+) be a normal sub-
group of (N,+). If IN ⊆ I, we say I is a right ideal of N . If for all
n1, n2 ∈ N and for all i ∈ I, n1(n2 + i) − n1n2 ∈ I, we say I is a left
ideal of N . If I is both a right ideal and a left ideal of N , we say I is
an ideal of N .

Assume N is a zero-symmetric nearring and let I be an ideal of N .
Then for n, 0 ∈ N and i ∈ I, the left ideal property yields n(0+i)−n0 =
ni− 0 = ni ∈ I. Thus NI ⊆ I. We will use this property in our work
without necessarily referencing it.

Definition 3.2. Let S be a subset of G. We define AnnS = {f ∈
M | f(S) = 0}.

Theorem 3.3. Let S be a subset of G with H ⊆ S. Then AnnS is an
ideal of M contained in AnnH.
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Proof. Let f1, f2 ∈ AnnS and s ∈ S. Then (f1 − f2)(s) = f1(s) −
f2(s) = 0− 0 = 0. Hence f1− f2 ∈ AnnS, and AnnS is a subgroup of
M .

Let n ∈ M , f ∈ AnnS, and s ∈ S. Then (−n + f + n)(s) =
−n(s)+f(s)+n(s) = −n(s)+0+n(s) = 0. Thus −n+f+n ∈ AnnS,
and AnnS is a normal subgroup of M . Also, note that n(s) ∈ H ⊆ S.
It follows that (f ◦ n)(s) = f(n(s)) = 0. So f ◦ n ∈ AnnS, and AnnS
is a right ideal of M .

Now let n1, n2 ∈M , f ∈ AnnS, and s ∈ S. Then (n1◦(n2+f)−n1◦
n2)(s) = n1(n2(s) + f(s))− n1(n2(s)) = n1(n2(s) + 0)− n1(n2(s)) = 0.
Hence n1 ◦ (n2 + f)− n1 ◦ n2 ∈ AnnS, and AnnS is a left ideal of M .
It follows that AnnS is an ideal of M . Since H ⊆ S, it is clear that
AnnS ⊆ AnnH. �

Note that the above theorem shows that AnnH is an ideal of M .
Also, for any two functions f1, f2 ∈ AnnS, f1 ◦ f2 = 0. Therefore the
entire multiplication table for AnnS consists solely of the zero function.

We next show that AnnH is the only maximal ideal of M .

Theorem 3.4. Let I be an ideal of M such that I 6⊆ AnnH. Then
I = M . Thus AnnH is the unique maximal ideal of M .

Proof. Let I be an ideal of M such that I 6⊆ AnnH. To prove that
I = M , we only need to show that M ⊆ I. Let f ∈ M be given by

f(x) =

{
hi if x = gi 6= 0
0 if x = 0

, where gi ∈ G, hi ∈ H, i = 1, 2, . . . , w.

Since I 6⊆ AnnH, there exists f1 ∈ I and k, b ∈ H such that f1(k) =
b 6= 0.

Define ni(x) =

{
k if x = gi
0 if x 6= gi

, and mi(x) =

{
hi if x = b
0 if x 6= b

for i =

1, 2, . . . , w. Then ni,mi ∈M . Define αi = mi ◦f1 ◦ni. Since I ◦M ⊆ I
and M ◦I ⊆ I, we conclude that αi ∈ I. By the definition of αi, we get

αi(x) =

{
hi if x = gi
0 if x 6= gi

. Note that f = α1 +α2 + · · ·+αw ∈ I. Hence

M ⊆ I and I = M . The rest of the theorem follows immediately. �

Now we consider the separate cases of whether |H| ≥ 3 or |H| = 2.

Theorem 3.5. Assume |H| ≥ 3. Let I be any ideal contained in
AnnH. Then I = AnnS for some subset S of G with H ⊆ S.

Proof. Assume that I ⊆ AnnH is an ideal and that 0, h, and h̄ are
distinct elements in H. Let S = {g ∈ G | f(g) = 0 for all f ∈ I}.
Then H ⊆ S and I ⊆ AnnS. Assume G\S = {g1, g2, . . . , gw}. To
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show AnnS ⊆ I, let f ∈ AnnS, say f(x) =

{
hi if x = gi 6∈ S
0 if x ∈ S ,

where hi ∈ H for every i = 1, 2, . . . , w.
For g1 ∈ G\S, there exists f1 ∈ I such that f1(g1) = k1 for some

0 6= k1 ∈ H. Assume f1(gi) = ki ∈ H for i = 2, 3, . . . , w. So f1(x) ={
ki if x = gi
0 else

.

Define n1(x) =

{
h if x = ki 6= 0
0 else

. Then n1 ∈ M . Hence fh(x) :=

(n1 ◦ f1)(x) =

{
h if x = gi and ki 6= 0
0 else

. Since I is an ideal of M , it

follows that fh ∈ I.

Now define the functions n2(x) =

{
h1 if x = h
0 else

, and n3(x) ={
h̄ if x = gi with i ≥ 2
0 else

. Then n2, n3 ∈ M . Define α1(x) = (n2 ◦

(n3 + fh) − n2 ◦ n3)(x). Since I is an ideal of M and fh ∈ I, we
conclude that α1 ∈ I.

Note that α1(g1) = (n2 ◦ (n3 + fh) − n2 ◦ n3)(g1) = n2(n3(g1) +
fh(g1))− n2(n3(g1)) = n2(0 + h)− n2(0) = n2(h) = h1.

For gi ∈ G\S, i ≥ 2 with ki 6= 0, α1(gi) = (n2◦(n3+fh)−n2◦n3)(gi) =
n2(n3(gi) + fh(gi))− n2(n3(gi)) = n2(h̄+ h)− n2(h̄) = 0− 0 = 0.

For gi ∈ G\S, i ≥ 2 with ki = 0, α1(gi) = (n2 ◦ (n3 + fh) − n2 ◦
n3)(gi) = n2(n3(gi) + fh(gi)) − n2(n3(gi)) = n2(h̄ + 0) − n2(h̄) = 0.

Thus, α1(x) =

{
h1 if x = g1
0 if x 6= g1

.

For each gi ∈ G\S, i ≥ 2, there exists fi ∈ I such that fi(gi) = zi
for some 0 6= zi ∈ H. Using the same procedure as above, we can

construct αi ∈ I such that αi(x) =

{
hi if x = gi
0 if x 6= gi

.

We see that f = α1 + α2 + · · · + αw ∈ I. Thus AnnS ⊆ I and
I = AnnS. �

Corollary 3.6. Assume |H| ≥ 3. Then the ideals of M are {0}, M ,
and AnnS with H ⊆ S.

Now we assume |H| = 2. Note that by Theorem 2.4, M is a ring in
this case.

Lemma 3.7. Assume |H| = 2 and let f ∈ AnnH. Then I = {0, f} is
an ideal of the ring M .

Proof. Since |H| = 2, it follows that f + f = 0. Thus (I,+) is a
subgroup of (M,+).
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Let n ∈ M and g ∈ G. For 0 ∈ I, we get 0 ◦ n = 0 ∈ I. Also, since
n(g) ∈ H, it follows that (f ◦n)(g) = f(n(g)) = 0. Thus f ◦n = 0 ∈ I.
Therefore I is a right ideal of M .

Next we verify that I is a left ideal of M . Let n ∈ M and g ∈ G.
For 0 ∈ I, we get n ◦ 0 = 0 ∈ I. For f ∈ I, we only need to show
that n ◦ f = 0 or n ◦ f = f . Let H = {0, h}. If n(h) = 0, then
n(H) = 0. Since f(g) ∈ H, it follows that (n ◦ f)(g) = n(f(g)) = 0.
Thus n ◦ f = 0 ∈ I.

Now assume n(h) = h. If f(g) = 0, then (n ◦ f)(g) = n(f(g)) =
n(0) = 0 = f(g). If f(g) = h, then (n ◦ f)(g) = n(f(g)) = n(h) = h =
f(g). Therefore n ◦ f = f ∈ I, and I is a left ideal of M . Hence I is
an ideal of M . �

Theorem 3.8. Assume |H| = 2 and let J ⊆ AnnH. Then J is an
ideal of the ring M if and only if (J,+) is a subgroup of (AnnH,+).

Proof. If J is an ideal of M , then clearly (J,+) is a subgroup of (M,+).
Since J ⊆ AnnH, we also have that (J,+) is a subgroup of (AnnH,+).
Now assume (J,+) is a subgroup of (AnnH,+). Then (J,+) is a
subgroup of (M,+).

Let 0 6= f ∈ J . Let I = {0, f}. By Lemma 3.7, I is an ideal of M .
Thus for all n ∈ M , f ◦ n ∈ I ⊆ J and n ◦ f ∈ I ⊆ J . It follows that
J is an ideal of M . �

Corollary 3.9. Assume |H| = 2. Then the ideals of M are {0}, M ,
and J where (J,+) is a subgroup of (AnnH,+).

In the case where |H| ≥ 3, every proper ideal was of the form AnnS
with H ⊆ S. This is not the case when |H| = 2, as the next proposition
illustrates.

Proposition 3.10. Assume |H| = 2, and let f ∈ AnnH such that
f(g1), f(g2) 6= 0 for some distinct g1, g2 6∈ H. Then the ideal I = {0, f}
is not of the form AnnS with H ⊆ S.

Proof. Assume I = AnnS for some H ⊆ S. Since f(g1), f(g2) 6= 0, we
conclude that g1, g2 6∈ S. Let H = {0, h}. Define a function f1(x) ={

0 if x ∈ S ∪ {g1}
h otherwise

. Then f1 ∈ AnnS. Since f1(g1) = 0, f1 6= f .

Also, f1(g2) = h 6= 0 implies that f1 6= 0. Therefore f1 ∈ AnnS,
but f1 6∈ I, a contradiction. Thus I is not of the form AnnS with
H ⊆ S. �

Lastly, we describe elements of the factor nearring M/AnnS. To
this end, we define T = {f : S → H | f(0) = 0}, where H ⊆ S. Then
T is a zero-symmetric nearring.
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Theorem 3.11. Let S be a subset of G with H ⊆ S. As nearrings,
M/AnnS ∼= T .

Proof. Consider the mapping ϕ : M → T given by ϕ(f) = f |S.
It is straightforward to verify that ϕ is a nearring homomorphism
with kernel AnnS. Let f1 ∈ T . Define f2 : G → G by f2(x) ={
f1(x) if x ∈ S

0 if x 6∈ S . Then f2 ∈ M and ϕ(f2) = f2|S = f1. Hence ϕ is

an epimorphism. By the First Isomorphism Theorem ([11], Theorem
1.27), M/AnnS ∼= T . �

We have examined the internal structure of the nearring M = {f :
G→ G | f(G) ⊆ H and f(0) = 0}. A possibility for future study is the
non-zero-symmetric nearring P = {f : G→ G | f(G) ⊆ H}. The same
properties explored in this paper could be considered for the nearring
P . A generalization of the nearring M could also be investigated. Let
H1 ≥ H2 ≥ · · · ≥ Hn be a collection of subgroups of G and consider
the nearring Q = {f : G → G | f(0) = 0 and f(G) ⊆ H1, f(H1) ⊆
H2, . . . , f(Hn−1) ⊆ Hn}. The study of the nearring Q may produce
interesting results.
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