تعداد نشریات | 31 |
تعداد شمارهها | 741 |
تعداد مقالات | 7,010 |
تعداد مشاهده مقاله | 10,027,314 |
تعداد دریافت فایل اصل مقاله | 6,756,059 |
اثر منبع و مدت زمان تغذیه اسید چرب امگا-3 و امگا-9 محافظت شده بر بیان برخی از ژن های دخیل در سوخت و ساز چربی در بره های پرواری | ||
تحقیقات تولیدات دامی | ||
دوره 12، شماره 4، اسفند 1402، صفحه 51-62 اصل مقاله (1.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2024.24349.1762 | ||
نویسندگان | ||
آزاده میرشمس الهی* 1؛ مهدی گنج خانلو2؛ فرهنگ فاتحی3 | ||
1استادیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، اراک، ایران | ||
2دانشیار، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران | ||
3استادیار، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
هدف از مطالعه حاضر بررسی تأثیر استفاده از نمکهای کلسیمی روغن ماهی، زیتون و چربی اشباع بر بیان برخی از ژنهای مرتبط با سوخت و ساز چربی در برههای پرواری آمیخته لری بختیاری×رومانف بود. تعداد 49 رأس بره نر چهار تا پنج ماهه با میانگین وزن اولیه 88/0±97/29 کیلوگرم، در قالب یک طرح کاملاً تصادفی به هفت گروه هفت رأسی تقسیم شدند. تیمارهای مورد بررسی شامل: جیره شاهد (بدون چربی) و جیره پایه به همراه نمکهای کلسیمی روغن ماهی، روغن زیتون و چربی اشباع (به میزان دو درصد ماده خشک جیره) برای دورههای زمانی 45 و 90 روزه مصرف بودند. در انتهای آزمایش، تعداد 28 رأس بره ذبح شده و یک نمونه از کبد برهها گرفته شد تا به وسیله آن، مطالعات نوتریژنومیک انجام شود. نتایج نشان داد که استفاده از نمکهای کلسیمی روغن ماهی، روغن زیتون و چربی اشباع، تأثیر معنیداری بر بیان ژنهای FADS1 و FADS2 در بافت کبد نسبت به گروه شاهد نداشت. با این حال، استفاده از نمکهای کلسیمی روغن ماهی و روغن زیتون در دورههای زمانی 90 و 45 روزه مصرف باعث افزایش معنیدار بیان mRNA کبدی ژنهای CPT1 (001/0=P) و ACOX1 (002/0=P) در بافت کبد نسبت به تیمارهای چربی اشباع و شاهد شد. نتایج حاصل از این مطالعه نشان داد که مکمل سازی جیره با نمکهای کلسیمی اسیدهای چرب غیراشباع ماهی و زیتون صرفنظر از دوره زمانی مصرف، باعث افزایش بیان ژنهای درگیر در لیپولیز چربیهای بافت کبد بره ها شد. | ||
کلیدواژهها | ||
اسید چرب غیراشباع؛ بره پرواری؛ بیان ژن؛ سوخت و ساز | ||
مراجع | ||
Abrahams, V. (2017). Novel mechanisms of placental inflammation in obstetric antiphospholipid syndrome. Placenta, 57, 243. Arana, A., Mendizabal, J. A., Alz´on, M., Eguinoa, P., Beriain, M. J., & Purroy, A. (2006). Effect of feeding lambs oleic acid calcium soaps on growth, adipose tissue development and composition. Small Ruminant Research, 63, 75-83. doi:10.1016/j.smallrumres.2005.02.006 Belal, S. A., Subramaniyan Sivakumar, A., Kang, D. R., Cho, S., Choe, H. S., & Shim, K. S. (2018). Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells. Animal Cells and Systems, 22(5), 324–333. doi: 10.1080/19768354.2018.1517824 Bonnefont, J. P., Djouadi, F., Prip-Buus, C., Gobin, S., Munnich, A., & Mol, B. J. (2004). Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Molecular Aspects of Medicine, 25, 495–520. doi: 10.1016/j.mam.2004.06.004 Cherfaoui, M., Durand, D., Bonnet, M., Bernard, L., Bauchart, D., Ortigues-Marty, I., & Gruffat, D. (2013). A grass-based diet favours muscle n-3 long-chain PUFA deposition without modifying gene expression of proteins involved in their synthesis or uptake in Charolais steers. Animal, 7, 1833-1840. doi: 10.1017/S1751731113001432 Chomczynski, P., & Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nature Protocols, 1, 581–585. doi: 10.1038/nprot.2006.83 Clarke, S. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. British Journal of Nutrition, 83, S59-S66. doi: 10.1017/s0007114500000969 Clarke, S. D. (2001). Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. American Journal of Physiology, 281, 865-869. doi: 10.1152/ajpgi.2001.281.4. G865 Coleman, D. N., Carranza Martin, A. C., Jin, Y., Lee, K., & Relling, A. E. (2019). Prepartum fatty acid supplementation in sheep. IV. Effect of calcium salts with eicosapentaenoic acid and docosahexaenoic acid in the maternal and finishing diet on lamb liver and adipose tissue during the lamb finishing period. Journal of Animal Science, 97(7), 3071-3088. doi: 10.1093/jas/skz154 Costa Alvarenga, T. I. R., Chen, Y., Furusho-Garcia, I. F., Olalquiaga Perez, J. R., & Hopkins, D. L. (2015). Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Comprehensive Reviews in Food Science and Food Safety, 14, 189-204. doi: 10.1111/1541-4337.12131 Costa Alvarenga, T. I. R., Chen, Y., Lewandowski, P., Ponnampalam, E. N., Sediq, S., Clayton, E. H., van de Ven, R. J., Olalquiaga Perez, J. R., & Hopkins, D. L. (2016). The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livestock Science, 187, 53-60. doi: 10.1016/j.livsci.2016.02.013 Dervishi, E., Serrano, C., Joy, M., Serrano, M., Rodellar, C., & Calvo, J. H. (2010). Effect of the feeding system on the fatty acid composition, expression of the Δ9-desaturase, Peroxisome Proliferator-Activated Receptor Alpha, Gamma, and Sterol Regulatory Element Binding Protein 1 genes in the semitendinous muscle of light lambs of the Rasa Aragonesa breed. BMC Veterinary Research, 6, 40-51. doi:10.1186/1746-6148-6-40 Dervishi, E., Serrano, C., Joy, M., Serrano, M., Rodellar, C., & Calvo, J. H. (2011). The effect of the feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep. Meat Science, 89, 91-97. doi: 10.1016/j.meatsci.2011.04.003 Fekri, A., & Ganj Khanlu, M. (2021). Effects of supplemental omega-3 protected sources of fish oil and flaxseed oil on ruminant performance. Domestic Journal, 20 (18), 48-53. doi: 10.22059/domesticsj.2021.312293.1053 [In Persian] Gregory, M. K., Gibson, R. A., Cook-Johnson, R. J., Cleland, L. G., & James, M. J. (2011). Elongase reactions as control points in long-chain polyunsaturated fatty acid synthesis. PLoS One, 6(12), e29662. doi: 10.1371/journal.pone.0029662 Hashemzadeh, F., Rafeie, F., Hadipour, A., & Rezadoust, M. H. (2023). Effect of adding a phytogenic-rich herbal mixture to diet on the expression pattern of some insulin hormone metabolism-related candidate genes of heat-stressed fattening Afshari-Shal lambs. Animal Production Research, 12(1), 25-37. doi: 10.22124/AR.2023.21822.1690 [In Persian] Haug, A., Nyquist, N. F., Thomassen, M., Høstmark, A. T., & Østbye, T. K. (2014). N-3 fatty acid intake altered fat content and fatty acid distribution in chicken breast muscle, but did not influence mRNA expression of lipid-related enzymes. Lipids in Health and Disease, 13, 92. doi: 10.1186/1476-511X-13-92 Iommelli, P., Infascelli, F., Musco, N., Grossi, M., Ferrara, M., Sarubbi, F., D’Aniello, B., Lombardi, P., & Tudisco, R. (2021). Stearoyl-CoA desaturase activity and gene expression in the adipose tissue of buffalo bulls was unaffected by diets with different fat content and fatty acid profile. Agriculture, 11, 1209-1221. doi: 10.3390/agriculture11121209 Jager, N., Hudson, N. J., Reverter, A., Barnard, R., Café, L. M., Greenwood, P. L, & Dalrymple, B. P. (2013). Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle. Journal of Animal Science, 91, 1112-1128. doi: 10.2527/jas.2012-5409 Kopecky, J., Rossmeisl, M., Flachs, P., Kuda, O., Brauner, P., Jilkova, Z., Stankova, B., Tvrzicka, E., & Bryhn, M. (2009). Symposium on ‘Frontiers in adipose tissue biology’ n-3 PUFA: bioavailability and modulation of adipose tissue function. Proceedings of the Nutrition Society, 68, 361-369. doi: 10.1017/S0029665109990231 Ladeira, M. M., Schoonmaker, J. P., Swanson, K. C., Duckett, S. K., Gionbelli, M. P., Rodrigues, L. M., & Teixeira, P. D. (2018). Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat. Animal, 12(2), 282-294. doi:10.1017/S1751731118001933 Lim, J. H., Gerhart-Hines, Z., Dominy, J. E., Lee, Y., Kim, S., Tabata, M., Xiang, Y. K., & Puigserver, P. (2013). Oleic acid stimulates complete oxidation of fatty acids through protein kinase a-dependent activation of SIRT1-PGC1α complex. The Jourrnal of Biological Chemistry, 288(10), 7117-7126. doi: 10.1074/jbc.M112.415729 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402-408. doi: 10.1006/meth.2001.1262 Matsumoto, H., Nogi, T., Tabuchi, I., Oyama, K., Mannen, H., & Sasazaki, S. (2014). The SNPs in the promoter regions of the bovine FADS2 and FABP4 genes are associated with beef quality traits. Livestock Science, 163, 34-40. doi: 10.1016/j.livsci.2014.02.016 Mirshamsollahi, A. Ganjkhanlou, M., Fatehi, F., Zali, A., & Sadeghi, M. (2022). Effect of source and duration of protected fatty acids feeding, on production performance, carcass characteristics and blood metabolites in fattening lambs. Research on Animal Production, 13(36), 47-56. doi:10.52547/rap.13.36.47 [In Persian] NRC. (2007). Nutrient Requirments of Small ruminant (7th ed.). National Academy Press, Washington, DC. Ponnampalam, E. N., Lewandowski, P. A., Fahri, T., Fahri, V. F., Burnett, F. R., Dunshea, T. Plozza, J., & Jacobs, L. (2015). Forms of n‑3 (ALA, C18:3n‑3 or DHA, C22:6n‑3) fatty acids affect carcass yield, blood lipids, muscle n‑3 fatty acids and liver gene expression in lambs. Lipids, 50(11), 1133-1143. doi: 10.1007/s11745-015-4070-4 Radonic, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., & Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313, 856-862. doi: 10.1016/j.bbrc.2003.11.177 Smith, S. B., Lunt, D. K., Chung, K. Y., Choi, C. B., Tume, R. K., & Zembayashi, M. (2006). Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Animal Science Journal, 77, 478-486. doi: 10.1111/j.1740-0929.2006.00375x Toral, P. G., Bernard, L., Delavaud, C., Gruffat, D., Leroux, C., & Chilliard, Y. (2013). Effects of fish oil and additional starch on tissue fatty acid profile and lipogenic gene mRNA abundance in lactating goats fed a diet containing sunflower-seed oil. Animal, 7, 948–956. doi: 10.1017/S1751731113000049 Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Rene ́Geurts, R., & Leunissen, A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35, 71-74. doi: 10.1093/nar/gkm306 Vahmani, P., Glover, K. E., & Fredeen, A. H. (2014). Effects of pasture versus confinement and marine oil supplementation on the expression of genes involved in lipid metabolism in mammary, liver, and adipose tissues of lactating dairy cows. Journal of Dairy Science, 97, 4174-4183. doi: 10.3168/jds.2013-7290 Vassiliou, E. K., Gonzalez, A., Garcia, C., Tadros, J. H., Chakraborty, G., & Toney, J. H. (2009). Lipids in Health and Disease, 8, 25. doi: 10.1186/1476-511X-8-25 Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134-145. doi:10.1186/1471-2105-13-13 | ||
آمار تعداد مشاهده مقاله: 267 تعداد دریافت فایل اصل مقاله: 139 |