تعداد نشریات | 31 |
تعداد شمارهها | 741 |
تعداد مقالات | 7,024 |
تعداد مشاهده مقاله | 10,062,786 |
تعداد دریافت فایل اصل مقاله | 6,765,959 |
نرخ شکارگری کنه شکارگرAmblyseius swirskii (Acari: Phytoseiidae) روی تریپس غربی گل | ||
تحقیقات آفات گیاهی | ||
دوره 13، شماره 3، آذر 1402، صفحه 77-89 اصل مقاله (1.66 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/iprj.2023.25863.1539 | ||
نویسندگان | ||
سجاد دلیر1؛ مصطفی خنامانی* 2 | ||
1گروه حشرهشناسی کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
2گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران | ||
چکیده | ||
کنه شکارگر Amblyseius swirskii Athias-Henriot یکی از مهمترین عوامل مهار زیستی مورد استفاده در برنامه کنترل بیولوژیک بسیاری از آفات میباشد. به هر حال قبل از به کارگیری دشمنان طبیعی در برنامه کنترل بیولوژیک، دانستن چگونگی کارایی آن عوامل زیستی ضروری است. در این پژوهش نرخ شکارگری سن-مرحله رشدی دوجنسی کنه شکارگر A. swirskii روی تریپس غربی گل Frankliniella occidentalis (Pergande) در شرایط آزمایشگاهی با دمای 1± 25 درجه سلسیوس، رطوبت نسبی 5±60 درصد و دوره نوری16 ساعت روشنایی و 8 ساعت تاریکی تعیین شد. میانگین و خطای معیار پارامترهای شکارگری با استفاده از روش بوت استرپ تخمین زده شد. بر اساس نتایج به دست آمده، نرخ شکارگری سنی-مرحله رشدی (Cxj) ماده بالغ شکارگر بیشتر از سایر مراحل رشدی بود. برای مراحل غیر شکارگری (تخم و لارو)، نرخ شکارگری صفر بود. نرخ خالص شکارگری (C0)، میانگین تعداد شکار مصرف شده توسط هر فرد شکارگر در تمام طول عمر، روی تریپس گل 25/159 شکار/شکارگر بود. علاوه بر این، نرخ متناهی شکارگری (ω) و نرخ پایدار شکارگر (Ψ) بهترتیب 635/2 شکار/شکارگر/ روز و 208/2 شکار/شکارگر/ روز بود. مقدار نرخ تبدیل (Qp)، میانگین تعداد شکار مورد نیاز برای تغذیه به منظور تولید یک نتاج، برابر با 39/8 شکار بود. نتایج به دست آمده در این پژوهش میتواند اطلاعات مهمی در طراحی یک برنامه جامع برای کنترل تریپس غربی گل توسط کنه شکارگر A. swirskii روی محصولات فراهم آورد. | ||
کلیدواژهها | ||
کنترل بیولوژیک؛ نرخ شکارگری؛ نرخ متناهی شکارگری؛ Frankliniella occidentalis | ||
مراجع | ||
Abou-Awad, B. A., Reda, A. S., & Elsawi, S. A. (1992). Effects of artificial and natural diets on the development and reproduction of two phytoseiid mites Amblyseius gossipi and Amblyseius swirskii (Acari: Phytoseiidae). International Journal of Tropical Insect Science, 13, 441-445. DOI: https://doi.org/10.1017/S1742758400013746
Alipour, Z., Fathipour, Y., Farazmand, A., & Khanamani, M. (2019). Resistant rose cultivar affects life table parameters of two-spotted spider mite and its predators Phytoseiulus persimilis and Amblyseius swirskii (Phytoseiidae). Systematic & Applied Acarology, 24, 1620–1630. DOI: https://doi.org/10.11158/saa.24.9.4
Arthurs, S., McKenzie, C. L., Chen, J., Dogramaci, M., Brennan, M., Houben, K., & Osborne, L. (2009). Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppe. Biological Control, 49, 91–96. DOI: https://doi.org/10.1016/j.biocontrol.2009.01.002
Barghout, M., Ibrahim, S., & El‑Saiedy, E. S. (2022). Efficacy of phytoseiid mites and pesticides to control Bemisia tabaci, Thrips tabaci and Tetranychus urticae on Capsicum annuum. Persian Journal of Acarology, 11(3), 497-513. DOI: https://doi.org/10.22073/pja.v11i3.74508
Bazgir, F., Shakarami, J., & Jafari, Sh. (2018). Life table and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae). Systematic & Applied Acarology, 23(8), 1614. DOI: https://doi.org/10.11158/saa.23.8.11
Brunner, P. C., & Frey, J. E. (2010). Habitat-specific population structure in native western flower thrips Frankliniella occidentalis (Insecta: Thysanoptera). Journal of Evolutionary Biology, 23, 797–804. DOI: https://doi.org/10.1111/j.1420-9101.2010.01946.x
Chi, H. (2019). CONSUME-MSChart: computer program for consumption rate analysis based on the age stage, two-sex life table. http://140.120.197.173/Ecology/Download/CONSUMMSChart.zip
Chi, H., & Yang, T.C. (2003). Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Enviromental Entomology, 32, 327-333. DOI: https://doi.org/10.1603/0046-225X-32.2.327
Chi, H., Huang, Y. u., Allahyari, H., Yu, J., Mou, D., Yang, T., Farhadi, R., & Gholizadeh, M. (2011). Finite Predation Rate: a Novel Parameter for the Quantitative Measurement of Predation Potential of Predator at Population Level. Nature Precedings: hdl:10101/npre.2011.6651.1: Posted 27 Nov 201.
Cloyd, R. A. (2009). Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: Have we reached an impasse? Pest Technology, 3, 1–9.
Dalir, S., Hajiqanbar, H., Fathipour, Y., & Khanamani, M. (2021a). Age-Dependent Functional and Numerical Responses of Neoseiulus cucumeris (Acari: Phytoseiidae) on Two-Spotted Spider Mite (Acari: Tetranychidae). Journal of Economic Entomology, 114(1), 50-61. DOI: https://doi.org/10.1093/jee/toaa266
Dalir, S., Hajiqanbar, H., Fathipour, Y., & Khanamani, M. (2021b). A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Pest Management Science, 77(12), 5418-5429. DOI: https://doi.org/10.1002/ps.6581
Dalir, S., Hajiqanbar, H., Fathipour, Y., & Khanamani, M. (2023). Effectiveness of the predatory mite Neoseiulus cucumeris on two-spotted spider mite and western flower thrips: A quantitative assessment. Submitted in Biological Conversation.
De Clercq, P. (2002). Dark clouds and their silver linings: exotic generalist predators in augmentive biological control. Neotropical Entomology, 31 (2), 169–176. DOI: https://doi.org/10.1590/S1519-566X2002000200001
Duso, C., & Pasqualetto, C. (1993). Factors affecting the potential of phytoseiid mites (Acari: Phytoseiidae) as biocontrol agents in North-Italian vineyards. Experimental & applied acarology, 17(4), 241-258. DOI: https://doi.org/10.1007/BF02337274
Farazmand, A., Fathipour, Y., & Kamali, K. (2015). Control of the spider mite Tetranychus urticae using phytoseiid and thrips predators under microcosm conditions: single-predator versus combined-predators release. Systematic & Applied Acarology, 20(2), 162–170. DOI: https://doi.org/10.11158/saa.20.2.2
Fathipour, Y., & Maleknia, B. (2016). Mite predators, In: Omkar (Ed.), Ecofriendly Pest Management for Food Security. Elsevier, San Diego, USA, pp. 329- 366. DOI: https://doi.org/10.1016/B978-0-12-803265-7.00011-7
Gao, Y. L., Lei, Z. R., & Reitz, S. R. (2012). Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Management Science, 8, 1111–1121. DOI: https://doi.org/10.1002/ps.3305
Gravandian, M., Fathipour, Y., Hajiqanbar, H., Riahi, E., & Riddick, E.W. (2022). Long-term effects of cattail Typha latifolia pollen on development, reproduction, and predation capacity of Neoseiulus cucumeris, a predator of Tetranychus urticae. Biocontrol, 67,149-160. DOI: https://doi.org/10.1007/s10526-021-10116-4
Hashemi, S., Asadi, M., & Khanamani, M. (2021). How does feeding on different diets affect the life history traits of Neoseiulus californicus? International Journal of Acarology, 47(5), 367-373. DOI: https://doi.org/10.1080/01647954.2021.1912175
Kadkhodazadeh, F., Asadi, M., & Khanamani, M. (2021). Suitability of different pollen grains and Tetranychus urticae as food for the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology, 10(3), 321-334. DOI: https://doi.org/10.22073/pja.v10i3.66952
Khanamani, M., Fathipour, Y., & Hajiqanbar, H. (2015). Assessing compatibility of the predatory mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and resistant eggplant cultivar in a tritrophic system. Annals of Entomological Society of American, 108(4), 501-512. DOI: https://doi.org/10.1093/aesa/sav032
Khanamani, M., Fathipour, Y., Talebi, A. A., & Mehrabadi, M. (2017). How pollen supplementary diet affect life table and predation capacity of Neoseiulus californicus on two-spotted spider mite. Systematic & Applied Acarology, 22(1), 135–147. DOI: http://orcid.org/0000-0002-7963-5409
McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic & Applied Acarology, 18, 297–320. DOI: https://doi.org/10.11158/saa.18.4.1
McMurtry, J. A., Huffaker, C. B., & Van de Vrie, M. (1970). Ecology of tetranychid mites and their natural enemies: Their biological characters and the impact of spray practices. Hilgardia, 40, 331-390. DOI: https://doi.org/10.3733/hilg.v40n11p331
Messelink, G. J., Van Steenpaal, S. E., & Ramakers, P. M. (2006). Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl, 51(6), 753-768. DOI: https://doi.org/10.1007/s10526-006-9013-9
Ragusa, S., & Swirski, E. (1975). Feeding habits development and oviposition of the predaceous mite Amblyseius swirskii Acarina Phytoseiidae on pollen of various weeds. Israel Journal of Entomology, 15, 55–62. DOI: https://doi.org/10.24349/izmp-v7mc
Rahmani Piyani, A., Shishehbor, P., Kocheili, F., & Riddick, E. W. (2021). Functional and numerical responses of the predator Amblyseius swirskii to its prey Tetranychus turkestani in the laboratory. Acarologia, 61(4), 901-909. DOI: https://doi.org/10.24349/r82w-YLJ1
Reitz, S. R. (2009). Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist, 92, 7–13. DOI: https://doi.org/10.1653/024.092.0102
Reitz, S. R., Gao, Y. L., & Lei, Z. R. (2011). Thrips: pests of concern to China and the United States. Agricultural Sciences in China, 10, 867–892. DOI: https://doi.org/10.1016/S1671-2927(11)60073-4
Riahi, E., Fathipour, Y., Talebi, A. A., & Mehrabadi, M. (2017). Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annals of Entomological Society in Amerian, 110, 244–253. DOI: https://doi.org/10.1093/aesa/saw091
Sabelis, M. W. (1985). Predation on Spider Mites. In: Spider Mites: Their Biology, Natural Enemies and Control”, (Eds): Helle, W. and Sabelis, M. W. Elsevier, Amsterdam, 1B: 103–129.
Salari, A., Khanamani, M., & Asadi, M. (2022). Assessing compatibility of Hippodamia variegata and resistant rose cultivar in the management of Macrosiphum rosae. Plant Pest Research, 1-7. (in Farsi). DOI: https://doi.org/10.22124/IPRJ.2022.5795
Shishehbor, P., Rahmani-Piyani, A., & Riahi, E. (2022). Effects of different pollen diets in comparison to a natural prey, Tetranychus turkestani (Acari: Tetranychidae), on development, survival, and reproduction of Euseius scutalis (Acari: Phytoseiidae). Systematic and Applied Acarology, 27(10), 2111-2122. DOI: https://doi.org/10.11158/saa.27.10.19
Skirvin, D. J., & De Courcy Williams, M. (1999) Differential effects of plant species on a mite pest (Tetranychus urticae) and its predator (Phytoseiulus persimilis): implications for biological control. Experimental & Applied Acarology, 23, 497–512. DOI: https://doi.org/10.1023/a:1006150521031
Southwood, T., & Henderson, A. (2000). Ecological methods. Blackwell Science, Oxford.
Van Lenteren, J.C. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57, 1–20. DOI: https://doi.org/10.1007/s10526-011-9395-1
Walzer, A., & Schausberger, P. (1999). Predation preferences and discrimination between con- and heterospecific prey by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. BioControl, 43, 469–478. DOI: https://doi.org/10.1023/A:1009974918500 | ||
آمار تعداد مشاهده مقاله: 134 تعداد دریافت فایل اصل مقاله: 113 |