تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,173 |
تعداد دریافت فایل اصل مقاله | 6,899,877 |
آشکارسازی پاسخ به عفونت آنفلوانزای H5N1: تجزیه و تحلیل مقایسه ای شبکه های بیان ژن و مسیرهای غنی شده عملکردی در جوجه ها و اردک ها | ||
تحقیقات تولیدات دامی | ||
دوره 12، شماره 4، اسفند 1402، صفحه 1-22 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.24839.1773 | ||
نویسندگان | ||
ساره گل پسند1؛ شاهرخ قوتی* 2؛ زهرا پزشکیان3 | ||
1دانشجوی کارشناسی ارشد، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان | ||
2استادیار، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان | ||
3دانش آموخته دکتری، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان | ||
چکیده | ||
درک ساز و کارهای مولکولی پاسخ میزبان به عفونت H5N1 برای گسترش اقدامات کنترل موثر و کاهش خطر یک بیماری همهگیر بالقوه بسیار مهم است. هدف مطالعه حاضر، تجزیه دادههای ریزآرایه آنفلوانزای فوق حاد پرندگان H5N1 جهت مقایسه شبکه ژنی در جوجهها و اردکها بود. مجموعه داده ریزآرایه GSE33389 مشتمل بر نمونه شاهد و زیر چالش H5N1 بافت ریه جوجه و اردک با بسته GEOquery نرمافزار R دانلود شد. ژنهای با بیان متفاوت با استفاده از بسته limma در نرمافزار R شناسایی شدند و سپس، ترسیم شبکههای ژنی با نرم افزار Cytoscape انجام شد. ژنهای اصلی با تعاملات زیاد با افزونه Cytohubba شناسایی شدند و در نهایت، ماژولهای اثرگذار با افزونه MCODE شناسایی شدند. تعداد 2062 و 565 ژن با بیان متفاوت بین بافت سالم و زیر چالش به ترتیب در جوجهها و اردکها شناسایی شدند (05/0P< و >2 |logFC|). نتایج تجزیه شبکه با استفاده از افزونه Cytohubba، ژنهایBUB1 ، NDC80، CDC20 را بهعنوان ژنهای هاب در جوجه و همچنین ژنهای کلیدی COL6A3، COL3A1 و PLOD2 را در اردک شناسایی نمود (05/0P<). مقایسه هستیشناسی ژنهای متفاوت بیان شده در جوجه و اردک نشان داد که بیشتر آنها در جوجهها در پاسخ ایمنی ذاتی و مقاومتهای التهابی میزبان نقش دارند، ولی در اردک بیشتر در سوخت و ساز چربی و تولید انرژی برای تامین نیازمندی مقاومت میزبان در برابر بیماری نقش ایفا میکنند. یافتههای این مطالعه ضمن افزایش آگاهی نسبت به چگونگی پاسخ میزبان به عفونت آنفلوانزای H5N1، ممکن است دستاوردهایی برای توسعه درمان هدفمند و راهبردهای نظارتی برای مبارزه موثر با شیوع H5N1 داشته باشد. | ||
کلیدواژهها | ||
آنفلوانزای فوق حاد پرندگان H5N1؛ بیوانفورماتیک؛ ریزآرایه؛ شبکه تعامل ژن؛ هستی شناسی ژن | ||
مراجع | ||
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Blood vessels and endothelial cells. In Molecular Biology of the Cell. 4th edition. Garland Science. Arrell, D., & Terzic, A. (2010). Network systems biology for drug discovery. Clinical Pharmacology & Therapeutics, 88(1), 120-125. doi: 10.1038/clpt.2010.91 Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2. doi: 10.1186/1471-2105-4-2 Beigel, J. (2005). Writing Committee of the World Health Organization Consultation on human influenza a/H5: avian influenza a (H5N1) infection in humans. New England Journal of Medicine, 353, 1374-1385. Betakova, T., Kostrabova, A., Lachova, V., & Turianova, L. (2017). Cytokines induced during influenza virus infection. Current Pharmaceutical Design, 23(18), 2616-2622. Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics, 5(29), 663-661. doi: 10.1093/bioinformatics/btt019 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091-1093. doi: 10.1093/bioinformatics/btp101 Cagle, C., Wasilenko, J., Adams, S. C., Cardona, C. J., To, T. L., Nguyen, T., Spackman, E., Suarez, D. L., Smith, D., & Shepherd, E. (2012). Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam. Avian Diseases, 56(3), 479-487. doi: 10.1637/10030-120511-Reg.1 Campbell, L. K., & Magor, K. E. (2020). Pattern recognition receptor signaling and innate responses to influenza A viruses in the mallard duck, compared to humans and chickens. Frontiers in Cellular and Infection Microbiology, 209. doi: 10.3389/fcimb.2020.00209 Campos-Ferraz, P. L., Bozza, T., Nicastro, H., & Lancha Jr, A. H. (2013). Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition, 29(11-12), 1388-1394. doi: 10.1016/j.nut.2013.05.003 Cañadas, O., Olmeda, B., Alonso, A., & Pérez-Gil, J. (2020). Lipid–protein and protein–protein interactions in the pulmonary surfactant system and their role in lung homeostasis. International Journal of Molecular Sciences, 21(10), 3708. doi: 10.3390/ijms21103708 Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298-307. doi: 10.1038/nature10144 Chen, Z., Cui, L., Xu, L., Liu, Z., Liang, Y., Li, X., Zhang, Y., Li, Y., Liu, S., & Li, H. (2022). Characterization of chicken p53 transcriptional function via parallel genome-wide chromatin occupancy and gene expression analysis. Poultry Science, 101(11), 102164. doi: 10.1016/j.psj.2022.102164 Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC System Biology, 8(Suppl. 4), S11. doi: 10.1186/1752-0509-8-s4-s11 Chothe, S. K., Nissly, R. H., Lim, L., Bhushan, G., Bird, I., Radzio-Basu, J., Jayarao, B. M., & Kuchipudi, S. V. (2020). NLRC5 serves as a pro-viral factor during influenza virus infection in chicken macrophages. Frontiers in Cell Infection Microbiology, 10, 230. doi: 10.3389/fcimb.2020.00230 Cornelissen, J. B., Vervelde, L., Post, J., & Rebel, J. M. (2013). Differences in highly pathogenic avian influenza viral pathogenesis and associated early inflammatory response in chickens and ducks. Avian Pathology, 42(4), 347-364. doi: 10.1080/03079457.2013.807325 Davis, S., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847. doi: 10.1093/bioinformatics/btm254 Dhama, K. (2013). Avian/Bird Flu virus: poultry pathogen having. Journal of Medical Science, 13(5), 301-315. doi: 10.3923/jms.2013.301.315 Dong, H.-J., Zhang, R., Kuang, Y., & Wang, X.-J. (2021). Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Archives of Microbiology, 203, 1021-1032. doi: 10.1007/s00203-020-02094-5 Dubois, J., Terrier, O., & Rosa-Calatrava, M. (2014). Influenza viruses and mRNA splicing: doing more with less. MBio, 5(3), e00070-00014. doi: 10.1128/mbio.00070-14 Eierhoff, T., Hrincius, E. R., Rescher, U., Ludwig, S., & Ehrhardt, C. (2010). The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathogens, 6(9), e1001099. doi: 10.1371/journal.ppat.1001099 Eswarakumar, V., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews, 16(2), 139-149. doi: 10.1016/j.cytogfr.2005.01.001 Evseev, D., & Magor, K. E. (2019). Innate immune responses to avian influenza viruses in ducks and chickens. Veterinary Sciences, 6(1), 5. doi: 10.3390/vetsci6010005 Grygiel-Górniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition Journal, 13, 17. doi: 10.1186/1475-2891-13-17. Guo, T., Hou, D., & Yu, D. (2019). Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Molecular Medicine Reports, 20(5), 4415-4424. doi: 10.3892/mmr.2019.10696 Hasin, Y., Seldin, M., & Lusis, A. (2017) Multi-omics approaches to disease. Genome Biology, 18(1), 1-15. doi: 10.1186/s13059-017-1215-1 Hong, G., Zhang, W., Li, H., Shen, X., & Guo, Z. (2014). Separate enrichment analysis of pathways for up-and downregulated genes. Journal of the Royal Society Interface, 11(92), 20130950. doi: 10.1098/rsif.2013.0950 Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., & Lane, H. C. (2007). DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Research, 35(suppl_2), W169-W175. doi: 10.1093/nar/gkm415 Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., & Girke, T. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 12(2), 115-121. doi: 10.1038/nmeth.3252 Jiao, L., Liu, Y., Yu, X.-Y., Pan, X., Zhang, Y., Tu, J., Song, Y.-H., & Li, Y. (2023). Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 15. doi: 10.1038/s41392-022-01285-4 Johnson, K. E., & Wilgus, T. A. (2014). Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Advances in Wound Care (New Rochelle), 3(10), 647-661. doi: 10.1089/wound.2013.0517 Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research, 30(1), 42-46. doi: 10.1093/nar/30.1.42 Kilpatrick, A. M., Chmura, A. A., Gibbons, D. W., Fleischer, R. C., Marra, P. P., & Daszak, P. (2006). Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences, 103(51), 19368-19373. doi: 10.1073/pnas.0609227103 Kim, D.-I., Kang, J.-H., Kim, E.-H., & Seo, Y.-J. (2021). KIF11 inhibition decreases cytopathogenesis and replication of influenza A virus. Molecular & Cellular Toxicology, 17, 201-212. doi: 10.1007/s13273-021-00126-9 Kim, W. H., Chaudhari, A. A., & Lillehoj, H. S. (2019). Involvement of T cell immunity in avian coccidiosis. Frontiers in Immunology, 10, 2732. doi: 10.3389/fimmu.2019.02732 Kim, W. K., Singh, A. K., Wang, J., & Applegate, T. (2022). Functional role of branched chain amino acids in poultry: a review. Poultry Science, 101(5), 101715. doi: 10.1016/j.psj.2022.101715 Klees, S., Schlüter, J.-S., Schellhorn, J., Bertram, H., Kurzweg, A. C., Ramzan, F., Schmitt, A. O., & Gültas, M. (2022). Comparative Investigation of Gene Regulatory Processes Underlying Avian Influenza Viruses in Chicken and Duck. Biology, 11(2), 219. doi: 10.3390/biology11020219 Kohl, M., Wiese, S., & Warscheid, B. (2011). Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics: from standards to applications, 291-303. doi: 10.1007/978-1-60761-987-1_18 Kuchipudi, S. V., Dunham, S. P., & Chang, K.-C. (2015). DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells. Genomics Data, 4, 60-64. doi: 10.1016/j.gdata.2015.03.004 Kuchipudi, S. V., Dunham, S. P., Nelli, R., White, G. A., Coward, V. J., Slomka, M. J., Brown, I. H., & Chang, K. C. (2012). Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1. Immunology and Cell Biology, 90(1), 116-123. doi: 10.1038/icb.2011.17 Kuchipudi, S. V., Tellabati, M., Sebastian, S., Londt, B. Z., Jansen, C., Vervelde, L., Brookes, S. M., Brown, I. H., Dunham, S. P., & Chang, K.-C. (2014). Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Veterinary Research, 45(1), 1-18. doi: 10.1186/s13567-014-0118-3 Kuek, L. E., & Lee, R. J. (2020). First contact: the role of respiratory cilia in host-pathogen interactions in the airways. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319(4), L603-l619. doi: 10.1152/ajplung.00283.2020 Kuivaniemi, H., & Tromp, G. (2019). Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 707, 151-171. doi: 10.1016/j.gene.2019.05.003 Lax, I., Johnson, A., Howk, R., Sap, J., Bellot, F., Winkler, M., Ullrich, A., Vennstrom, B., Schlessinger, J., & Givol, D. (1988). Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Molecular and Cellular Biology, 8(5), 1970-1978. doi: 10.1128/mcb.8.5.1970-1978.1988 Lee, S., Hirohama, M., Noguchi, M., Nagata, K., & Kawaguchi, A. (2018). Influenza A virus infection triggers pyroptosis and apoptosis of respiratory epithelial cells through the type I interferon signaling pathway in a mutually exclusive manner. Journal of Virology, 92(14), e00396-00318. doi: 10.1128/JVI.00396-18 Lee, S., Hwang, N., Seok, B. G., Lee, S., Lee, S.-J., & Chung, S. W. (2023). Autophagy mediates an amplification loop during ferroptosis. Cell Death & Disease, 14(7), 464. doi: 10.1038/s41419-023-05978-8 Lee, S., Lee, R. H., Kim, S. J., Lee, H. K., Na, C. S., & Song, K. D. (2019). Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation. Asian-Australasian Journal of Animal Science, 32(12), 1942-1949. doi: 10.5713/ajas.19.0192 Lockhart, D. J., & Winzeler, E. A. (2000). Genomics, gene expression and DNA arrays. Nature, 405(6788), 827-836. doi: 10.1038/35015701 Lorizate, M., & Kräusslich, H. G. (2011). Role of lipids in virus replication. Cold Spring Harbor Perspectives in Biology, 3(10), a004820. doi: 10.1101/cshperspect.a004820 Lovén, J., Orlando, D. A., Sigova, A. A., Lin, C. Y., Rahl, P. B., Burge, C. B., Levens, D. L., Lee, T. I., & Young, R. A. (2012). Revisiting global gene expression analysis. Cell, 151(3), 476-482. doi: 10.1016/j.cell.2012.10.012 McCleland, M. L., Gardner, R. D., Kallio, M. J., Daum, J. R., Gorbsky, G. J., Burke, D. J., & Stukenberg, P. T. (2003). The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes and Development, 17(1), 101-114. doi: 10.1101/gad.1040903 Mehrabadi, M. F., Ghalyanchilangeroudi, A., Tehrani, F., Hajloo, S. A., Bashashati, M., Bahonar, A., Pourjafar, H., & Ansari, F. (2022). Assessing the economic burden of multi-causal respiratory diseases in broiler farms in Iran. Tropical Animal Health and Production, 54(2), 117. doi: 10.1007/s11250-022-03110-0 Metcalfe, R. D., Putoczki, T. L., & Griffin, M. D. (2020). Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Frontiers in Immunology, 11, 1424. doi: 10.3389/fimmu.2020.01424 Mutryn, M. F., Brannick, E. M., Fu, W., Lee, W. R., & Abasht, B. (2015). Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics, 16(1), 1-19. doi: 10.1186/s12864-015-1623-0 Navidshad, B., & Royan, M. (2016). Peroxisome proliferator-activated receptor alpha (PPARα), a key regulator of lipid metabolism in Avians. Critical Reviews in Eukaryotic Gene Expression, 26(4), 303-308. doi: 10.1615/CritRevEukaryotGeneExpr.2016016665 Obexer, P., Hagenbuchner, J., Unterkircher, T., Sachsenmaier, N., Seifarth, C., Böck, G., Porto, V., Geiger, K., & Ausserlechner, M. (2009). Repression of BIRC5/survivin by FOXO3/FKHRL1 sensitizes human neuroblastoma cells to DNA damage-induced apoptosis. Molecular Biology of the Cell, 20(7), 2041-2048. doi: 10.1091/mbc.e08-07-0699 Paquette, S. G., Banner, D., Huang, S. S., Almansa, R., Leon, A., Xu, L., Bartoszko, J., Kelvin, D. J., & Kelvin, A. A. (2015). Influenza transmission in the mother-infant dyad leads to severe disease, mammary gland infection, and pathogenesis by regulating host responses. PLoS Pathogens, 11(10), e1005173. doi: 10.1371/journal.ppat.1005173 Pezeshkian, Z., Mirhoseini, S. Z., & Ghovvati, S. (2022). Identification of hub genes involved in apparent metabolizable energy of chickens. Animal Biotechnology, 33(2), 242-249. doi: 10.1080/10495398.2020.1784187 Pociask, D. A., Robinson, K. M., Chen, K., McHugh, K. J., Clay, M. E., Huang, G. T., Benos, P. V., Janssen-Heininger, Y. M., Kolls, J. K., & Anathy, V. (2017). Epigenetic and transcriptomic regulation of lung repair during recovery from influenza infection. The American Journal of Pathology, 187(4), 851-863. doi: 10.1016/j.ajpath.2016.12.012 R Core Team (2023). R Foundation for Statistical Computing, version 4.2.3, Vienna, Austria. Rehman, Z., Naz, S., Khan, R., & Tahir, M. (2017). An update on potential applications of L-carnitine in poultry. World's Poultry Science Journal, 73(4), 823-830. doi: 10.1017/S0043933917000733 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47-e47. doi: 10.1093/nar/gkv007 Stecher, B. R., Hapfelmeier, S., Müller, C., Kremer, M., Stallmach, T., & Hardt, W.-D. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infection and Immunity, 72(7), 4138-4150. doi: 10.1128/IAI.72.7.4138-4150.2004 Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 17(3), 183-193. doi: 10.1038/nrm.2016.8 Tong, Z. W. M., Karawita, A. C., Kern, C., Zhou, H., Sinclair, J. E., Yan, L., Chew, K. Y., Lowther, S., Trinidad, L., & Challagulla, A. (2021). Primary chicken and duck endothelial cells display a differential response to infection with highly pathogenic avian influenza virus. Genes, 12(6), 901. doi: 10.3390/genes12060901 Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(11), 2563-2582. doi: 10.1016/j.bbamcr.2014.05.014 Us, D. (2008). Cytokine storm in avian influenza. Mikrobiyoloji Bulteni, 42(2), 365-380. Vu, T. H., Hong, Y., Truong, A. D., Lee, J., Lee, S., Song, K.-D., Cha, J., Dang, H. V., Tran, H. T. T., & Lillehoj, H. S. (2022). Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Animal Bioscience, 35(3), 367. doi: 10.5713/ab.21.0163 Wang, B., Su, Q., Luo, J., Li, M., Wu, Q., Chang, H., Du, J., Huang, C., Ma, J., & Han, S. (2021). Differences in highly pathogenic H5N6 avian influenza viral pathogenicity and inflammatory response in chickens and ducks. Frontiers in Microbiology, 12, 593202. doi: 10.3389/fmicb.2021.593202 Wang, C., Nie, G., Zhuang, Y., Hu, R., Wu, H., Xing, C., Li, G., Hu, G., Yang, F., & Zhang, C. (2020). Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. Ecotoxicology and Environmental Safety, 205, 111188. doi:10.1016/j.ecoenv.2020.111188 Wang, J., Hu, T., Wang, Q., Chen, R., Xie, Y., Chang, H., & Cheng, J. (2021). Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer. Cancer Letters, 509, 89-104. doi: 10.1016/j.canlet.2021.03.028 Yin, H.-C., Zhao, L.-L., Li, S.-Q., Niu, Y.-J., Jiang, X.-J., Xu, L.-J., Lu, T.-F., Han, L.-X., Liu, S.-W., & Chen, H.-Y. (2017). Autophagy activated by duck enteritis virus infection positively affects its replication. Journal of General Virology, 98(3), 486-495. doi: 10.1099/jgv.0.000696 Yu, W., Shi, S., Qiu, Y., Jin, Z., Zhou, J., & Zhang, H. (2023). AURKA identified as potential lung cancer marker through comprehensive bioinformatic analysis and experimental verification. Critical Reviews in Eukaryotic Gene Expression, 33(5), 39-59. doi: 10.1615/CritRevEukaryotGeneExpr.2023046830 Zhai, Y., Franco, L. M., Atmar, R. L., Quarles, J. M., Arden, N., Bucasas, K. L., Wells, J. M., Nino, D., Wang, X., & Zapata, G. E. (2015). Host transcriptional response to influenza and other acute respiratory viral infections–a prospective cohort study. PLoS Pathogens, 11(6), e1004869. doi: 10.1371/journal.ppat.1004869 Zhou, J., Law, H. K., Cheung, C. Y., Ng, I. H., Peiris, J. S., & Lau, Y. L. (2006). Differential expression of chemokines and their receptors in adult and neonatal macrophages infected with human or avian influenza viruses. Journal of Infectious Diseases, 194(1), 61-70. doi: 10.1086/504690 | ||
آمار تعداد مشاهده مقاله: 998 تعداد دریافت فایل اصل مقاله: 553 |