تعداد نشریات | 31 |
تعداد شمارهها | 766 |
تعداد مقالات | 7,260 |
تعداد مشاهده مقاله | 10,624,207 |
تعداد دریافت فایل اصل مقاله | 7,094,219 |
Study of the structure of quotient rings satisfying algeraic identities | ||
Journal of Algebra and Related Topics | ||
دوره 11، شماره 2، اسفند 2023، صفحه 117-125 اصل مقاله (84.86 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.23527.1482 | ||
نویسندگان | ||
A. Boua* 1؛ M. El Hamdaoui2 | ||
1Department of Mathematics, Polydisciplinary Faculty, Taza Sidi Mohamed Ben Abdellah University, Fes Morocco | ||
2Department of Mathematics, Polydisciplinary Faculty, Taza Sidi Mohamed Ben Abdellah University, Fes, Morocco | ||
چکیده | ||
Assuming that $\mathcal{R}$ is an associative ring with prime ideal $P$, this paper investigates the commutativity of the quotient ring $\mathcal{R}/P$, as well as the possible forms of generalized derivations satisfying certain algebraic identities on $\mathcal{R}.$ We give results on strong commutativity, preserving generalized derivations of prime rings, using our theorems. Finally, an example is given to show that the restrictions on the ideal $P$ are not superfluous. | ||
کلیدواژهها | ||
Generalized derivations؛ Prime ideals؛ Prime rings | ||
مراجع | ||
1. A. Ali, M. Yasen and M. Anwar, Strong commutativity preserving mappings on semiprime rings, Bull. Korean Math. Soc. 4 (43) (2006), 711-713. 2. C. K. Liu and P. K. Liau, Strong commutativity preserving generalized deriva- tions on Lie ideals, Linear Multilinear Algebra, 59 (2011), 905-915. 3. C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), 453-465. 4. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. 5. F. A. A. Alhmadi, A. Mamouni and M. Tamekkante, A generalization of Posner's theorem on derivations in rings, Indian J. Pure Appl. Math. (51) 5 (2020), 187- 194. 6. H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserv- ing maps, Canad. Math. Bull. (37) 4 (1994), 443{447. doi: 10.4153/CMB-1994- 064-x. 7. H. E. Bell and G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ. 34 (1992), 135-144. 8. J. S. Lin and C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), 14-23. 9. J. Ma and X. W. Xu, Strong commutativity-preserving generalized deriva- tions on semiprime rings, Acta Math. Sinica, (24) 11 (2008), 1835{1842. Doi: 10.1007/s10114-008-7445-0 (English Series). 10. J. S. Lin and C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), 1601-1609. 11. K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196, New York: Marcel Dekker, Inc.(1996). 12. M. Bresar and C. R. Miers, Strong commutativity preserving mappings of semiprime rings, Canad. Math. Bull. 37 (1994) 457-460. 13. M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Am. Math. Soc. (335) 2 (1993), 525{546. doi: 10.1090/S0002-9947-1993-1069746-X. 14. M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc. (108) 4 (1990), 859{860. 15. M. Bresar, On the distance of the composition of two derivations to the gener- alized derivations, Glasg. Math. J. 33 (1991), 89-93. 16. M. S. Samman, On strong commutativity-preserving maps, Int. J. Math. Math. Sci. 6(2005), 917{923. Doi: 10.1155/IJMMS.2005.917. 17. P. Semrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051-1070. 18. Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), 259-263. 19. T. K. Lee and T. L. Wong, Nonadditive strong commutativity preserving maps, Comm. Algebra, 40 (2012), 2213-2218. | ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 247 |