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STUDY OF THE STRUCTURE OF QUOTIENT RINGS
SATISFYING ALGEBRAIC IDENTITIES

M. EL HAMDAOUI AND A. BOUA∗

Abstract. Assuming that R is an associative ring with prime
ideal P , this paper investigates the commutativity of the quotient
ring R/P , as well as the possible forms of generalized derivations
satisfying certain algebraic identities on R. We give results on
strong commutativity, preserving generalized derivations of prime
rings, using our theorems. Finally, an example is given to show
that the restrictions on the ideal P are not superfluous.

1. Introduction

In all that follows, R always denotes an associative ring with center
Z(R) and C is the extended centroid of R (we refer the reader to [11]
for more information about these objects). As usual, the symbols [s, t]
and s◦t denote the commutator st−ts and the anticommutator st+ts,
respectively. Recall that a ring R is prime if xRy = {0} implies x = 0
or y = 0, and R is semiprime if xRx = {0} implies x = 0.

The study of commutativity preserving mappings has been an active
research area in matrix theory, operator theory, and ring theory (see
[13], [17] for references). According to [7], let S be a subset of R.
A map F : R → R is said to be strongly commutativity preserving
(SCP) on S if [F (x), F (y)] = [x, y] for all x, y ∈ S. In [6], Bell and
Daif investigated commutativity in rings admitting a derivation which
is SCP on a nonzero right ideal. In particular, they proved that if a
semiprime ring R admits a derivation d satisfying [d(x), d(y)] = [x, y]
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for all x, y in a right ideal I of R, then I ⊆ Z(R) (see [12] for more
information). In particular, R is commutative if I = R. Later, Deng
and Ashraf [18] proved that if there exists a derivation d of a semiprime
ring R and a map F : I → R defined on a non-zero ideal I of R such
that [F (x), d(y)] = [x, y] for all x, y ∈ I, then R contains a non-zero
central ideal. In particular, they showed that R is commutative if
I = R. Recently, this result was extended to Lie ideals and symmetric
elements of prime rings by Lin and Liu in [10] and [8], respectively, and
to the case of generalized derivations by Ma and Xu in [9]. There is also
a growing literature on strong commutativity preserving (SCP) maps
and derivations (for references see [6], [13], [9], etc.) In [1], Ali et al.
showed that if R is a semiprime ring and f is an endomorphism which
is a strong commutativity preserving (simple, SCP) map on a non-zero
ideal U of R, then f commutes on U . In [16], Samman proved that an
epimorphism of a semiprime ring is strongly commutativity preserving
if and only if it is centralizing. Derivations as well as SCP mappings
have been studied extensively by researchers also in the context of
operator algebras, prime rings, and semiprime rings. Many related
generalizations of these results can be found in the literature (see for
example [13], [19], [3], [2], and [4]).
In this paper, we discuss the notion of a generalized derivation that
satisfies one of the following conditions:
(i) [F (x), F (y)] +H([x, y]) ∈ P , for all x, y ∈ R,
(ii) F (x) ◦ F (y) +H(x ◦ y) ∈ P , for all x, y ∈ R,
(iii) [F (x), F (y)] +H(x ◦ y) ∈ P , for all x, y ∈ R,
(iv) F (x) ◦ F (y) +H([x, y]) ∈ P , for all x, y ∈ R,
where P is a prime ideal of R, F is a generalized derivation, and H is
a multiplier of R.
Finally, a concrete example is given to show that the restrictions on
our assumptions about the results are not superfluous.

2. Results

In this part, we will talk about some well-known results in ring the-
ory, which will be used a lot in the following sections.

(i) [x, yz] = y[x, z] + [x, y]z.
(ii) [xy, z] = [x, z]y + x[y, z].
(iii) xy ◦ z = (x ◦ z)y + x[y, z] = x(y ◦ z)− [x, z]y.
(iv) x ◦ yz = y(x ◦ z) + [x, y]z = (x ◦ y)z + y[z, x].

Lemma 2.1. [5, Lemma 2.1] Let R be a ring, P be a prime ideal of R,
and d a derivation of R. If [d(x), x] ∈ P for all x ∈ R, then d(R) ⊆ P
or R/P is commutative.
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Lemma 2.2. [14, Lemma] Let R be a prime ring. If functions F :
R −→ R and G : R −→ R are such that F (x)yG(z) = G(x)yF (z) for
all x, y, z ∈ R, and F ̸= 0, then there exists λ in the extended centroid
of R such that G(x) = λF (x) for all x ∈ R.

The following two Lemmas are also used to prove our theorems. The
primary goal is to establish a connection between the commutativity
of rings R/P and the behavior of their generalized derivations. The
next lemma is a generalization of [5, Lemma 2.1].

Lemma 2.3. Let R be a ring and P be a prime ideal of R. If R admits
a multiplicative generalized derivation F associated with a derivation
d, such that R satisfies one of the following assertions:

(i) [x, F (y)] ∈ P for all x, y ∈ R,
(ii) x ◦ F (y) ∈ P for all x, y ∈ R,

then d(R) ⊆ P or R/P is commutative.

Proof. (i) Suppose that

[x, F (y)] ∈ P for all x, y ∈ R. (2.1)

Replacing y by yt in (2.1), we obtain

F (y)[x, t] + [x, F (y)]t+ y[x, d(t)] + [x, y]d(t) ∈ P for all x, y, t ∈ R.

Using (2.1), we get

F (y)[x, t] + [x, y]d(t) + y[x, d(t)] ∈ P for all x, y, t ∈ R. (2.2)

For x = t in (2.2), it follows that

[t, y]d(t) + y[t, d(t)] ∈ P for all y, t ∈ R. (2.3)

Taking ry instead of y in (2.3) and using (2.3), we conclude that

[t, r]yd(t) ∈ P for all r, y, t ∈ R.

Equivalently,
[t, r]Rd(t) ⊆ P for all r, t ∈ R.

By primness of P, we arrive at

[t, r] ∈ P or d(t) ∈ P for all r, t ∈ R. (2.4)

If we set A = {t ∈ R | [t, r] ∈ P for all r ∈ R} and B = {t ∈ R |
d(t) ∈ P}. Then A and B are two additive subgroups of R such that
A ∪ B = R. Since a group cannot be a union of two of its proper
subgroups, we must conclude that R = A or R = B. Therefore,
d(R) ⊆ P or R/P is commutative.
(ii) Using the same techniques that as used in the proof of (i) with
minor modifications, we can easily arrive at our result. □
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Lemma 2.4. Let R be a ring and P be a prime ideal of R. If R admits
a generalized derivation F associated with a derivation d such that R
satisfies any of the following assertions:

(i) [x, F (x)] ∈ P for all x ∈ R,
(ii) x ◦ F (x) ∈ P for all x ∈ R,

then d(R) ⊆ P or R/P is commutative.

Proof. (i) Assuming that

[x, F (x)] ∈ P for all x ∈ R. (2.5)

Linearizing Eq. (2.5), we obtain

[x, F (y)] + [y, F (x)] ∈ P for all x, y ∈ R. (2.6)

Replacing y by yx in (2.6), and using it with (2.5) we obtain

y[x, d(x)] + [x, y]d(x) ∈ P for all x, y ∈ R. (2.7)

Putting yz instead of y in (2.7), where z ∈ R and using it again, we
get

[x, y]zd(x) ∈ P for all x, y, z ∈ R.

Since P is prime ideal of R, we arrive at

[x, y] ∈ P or d(x) ∈ P for all x, y ∈ R. (2.8)

Suppose that d(R) ⊈ P. There exists x ∈ R such that d(x) /∈ P. By
(2.8), we get [x, y] ∈ P for all y ∈ R which implies that x̄ ∈ Z(R/P ).
Let z ∈ R such that z̄ /∈ Z(R/P ). Then, there exists y0 ∈ R such that
[z, y0] /∈ P. Therefore, from (2.8), we find that d(z) ∈ P. On the other
hand, since d(x) /∈ P, we can derive d(x + z) /∈ P. Using (2.8) again,
the last expression gives [x+ z, y] ∈ P for all y ∈ R, which forces that
[z, y] ∈ P for all y ∈ R; a contradiction.

(ii) Suppose that

x ◦ F (x) ∈ P for all x ∈ R. (2.9)

Linearizing (2.9), we get

x ◦ F (y) + y ◦ F (x) ∈ P for all x, y ∈ R. (2.10)

Substituting yx for y in (2.10),and using it again, we find that

y(x ◦ d(x)) + [x, y]d(x) + y[x, F (x)] ∈ P for all x, y ∈ R. (2.11)

Replacing y by yz in (2.11), where z ∈ R and we using it again, we
obtain

[x, y]zd(x) ∈ P for all x, y, z ∈ R. (2.12)

We continue with the same techniques as used in (i), and we get the
required result. □
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Corollary 2.5. Let R be a prime ring. If R admits a generalized
derivation F associated with a nonzero derivation d, then the following
assertions are equivalents :

(i) [x, F (x)] = 0 for all x ∈ R.
(ii) x ◦ F (x) = 0 for all x ∈ R.
(iii) R is a commutative ring.

Theorem 2.6. Let R be a ring and P a prime ideal of R. Suppose
that R admits a multiplier H and a generalized derivation F associated
with a nonzero derivation d of R such that d(P ) ⊆ P. If [F (x), F (y)]+
H([x, y]) ∈ P for all x, y ∈ R, then one of the following assertions
hold:

(i) H(R) ⊆ P.
(ii) There exists λ ∈ C such that F − λ maps R into P with (λ2 +

H)([x, y]) ∈ P for all x, y ∈ R.
(iii) R/P is a commutative ring.

Proof. Suppose that R/P is not a commutative ring and

[F (x), F (y)] +H([x, y]) ∈ P for all x, y ∈ R. (2.13)

Replacing x by xt in (2.13) and using it, we conclude that

F (x)[t, F (y)] + x[d(t), F (y)] + [x, F (y)]d(t) +H(x)[t, y] ∈ P

for all x, y, t ∈ R.
(2.14)

Substituting ux for x in (2.14), we find that

F (u)x[t, F (y)] + ud(x)[t, F (y)] + ux[d(t), F (y)] + u[x, F (y)]d(t)+

[u, F (y)]xd(t) + uH(x)[t, y] ∈ P.
(2.15)

Left-multiplying (2.14) by u and comparing with (2.15), we get

(F (u)x− uF (x))[t, F (y)] + ud(x)[t, F (y)] + [u, F (y)]xd(t) ∈ P

for all x, y, u, t ∈ R.
(2.16)

Taking t = F (y) in (2.16), we obtain [u, F (y)]Rd(F (y)) ⊆ P for all
u, y ∈ R.
By primeness of P, it follows that for each y in R either [u, F (y)] ∈ P
for all u ∈ R or d(F (y)) ∈ P.
Let A = {y ∈ R | [u, F (y)] ∈ P for all u ∈ R} and B = {y ∈ R |
d(F (y)) ∈ P}. Clearly, A and B are additive subgroups of R such that
A ∪ B = R. The fact that a group cannot be a union of two of its
proper subgroups, forces us to conclude that either R = A or R = B.
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Assume that R = A. Then by Lemma 2.3(i) and our hypothesis, we
get d(R) ⊆ P. In the latter case, from our assumption we get

[u, F (yw)] = F (y)[u,w]+[u, F (y)]w+[u, yd(w)] ∈ P for all y, u, w ∈ R.

Since [u, F (yw)] ∈ P and [u, F (y)] ∈ P for all w, u, y ∈ P , it is easy to
notice that F (y)[u,w] ∈ P for all y, u, w ∈ R. From this, we can easily
arrive at F (y)R[u,w] ⊆ P for all u,w, y ∈ R. Hence, it follows that
F (R) ⊆ P . From our initial hypothesis (2.13), we get

H([x, y]) ∈ P for all x, y ∈ R. (2.17)

In (2.17), replacing x by xt and using it again, we find that [x, y]H(t) ∈
P for all x, y, t ∈ R. Replacing y by yr, where r ∈ R, we get
[x, y]rH(t) ∈ P for all x, y, r, t ∈ R, which implies that by the primness
of P that H(R) ⊆ P.

Next, we consider the case R = B, it follows that d(F (y)) ∈ P for all
y ∈ R. It implies that for each x, y ∈ R, we have d([F (x), F (y)]) ∈ P.
Applying d to equation (2.13) and using the condition d(P ) ⊆ P, we
get

d(H([x, y])) ∈ P for all x, y ∈ R. (2.18)

Replacing x by xy in (2.18) and using it, we find that

H([x, y])d(y) ∈ P for all x, y ∈ R.

Replacing x by xt and using it, we findH([x, y])td(y) ∈ P for all x, y, t ∈
R. Therefore, either H([R,R]) ⊆ P or d(R) ⊆ P . If H([R,R]) ⊆ P ,
then as in (2.17) we have H(R) ⊆ P . Let’s suppose that d(R) ⊆ P ,
from (2.16) we have (F (u)x−uF (x))[t, F (y)] ∈ P for all x, y, t, u ∈ R,
that means that (F (u)x− uF (x)) ∈ P for all x, u ∈ R or [t, F (y)] ∈ P
for all y, t ∈ R (The second case is already discussed above). So, we
assume that F (u)x − uF (x) ∈ P for all u, x ∈ R. Replacing u by uy,
we get

F (u)yIR(x) = IR(u)yF (x) for all x, y, u ∈ R,

where IR is the identity map of R.
Using Lemma 2.2, there exists λ ∈ C such that F (x) = λx for all
x ∈ R. It implies that F (x)− λx ∈ P for all x ∈ R. Hence,

[{F − λ}(x), {F + λ}(y)] ∈ P.

In view of our hypothesis, we get (λ2 + H)([x, y]) ∈ P for all x, y ∈
R. □

In the same way, we can get the following result:
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Theorem 2.7. Let R be a ring and P a prime ideal of R. If R ad-
mits a multiplier H and a generalized derivation F associated with a
nonzero derivation d with d(P ) ⊆ P, such that any one of the following
assertions hold:

(a) F (x) ◦ F (y) +H([x, y]) ∈ P for all x, y ∈ R,
(b) F (x) ◦ F (y) +H(x ◦ y) ∈ P for all x, y ∈ R,
(c) [F (x), F (y)] +H(x ◦ y) ∈ P for all x, y ∈ R,

then one of the following holds:

(i) H(R) ⊆ P.
(ii) There exists λ ∈ C such that F − λ maps R into P with (λ2 +

H)([x, y]) ∈ P for all x, y ∈ R.
(iii) R/P is a commutative ring.

Proof. (a) By our assumption

F (x) ◦ F (y) +H([x, y]) ∈ P for all x, y ∈ R.

Replacing x by xt in the above expression and using it, we conclude
that

F (x)[t, F (y)] + (x ◦ F (y))d(t) + x[d(t), F (y)] +H(x)[t, y] ∈ P. (2.19)

Substituting ux for x in (2.19), we find that

F (u)x[t, F (y)] + ud(x)[t, F (y)] + u(x ◦ F (y))d(t)− [u, F (y)]xd(t)

+ux[d(t), F (y)] + uH(x)[t, y] ∈ P for all x, y, t, u ∈ R.
(2.20)

Left-multiplying (2.19) by u and comparing with (2.20), we get

(F (u)x− uF (x))[t, F (y)] + ud(x)[t, F (y)]

−[u, F (y)]xd(t) ∈ P for all x, y, t, u ∈ R.
(2.21)

We process using the same approach as in Theorem 2.6, and finally
we arrive at our result. We can reach the conclusions of (b) and (c)
by using similar techniques as before, with the necessary variations of
(c). □

It is easy to prove that the maps IR and −IR are multipliers of R.
We get the following results by replacing H with ∓IR:

Corollary 2.8. Let R be a ring and P be a proper prime ideal of
R. If R admits a generalized derivation F associated with a nonzero
derivation d with d(P ) ⊆ P, such that R satisfies one of the following
assertions:

(a) [F (x), F (y)]∓ [x, y] ∈ P for all x, y ∈ R,
(b) F (x) ◦ F (y)∓ [x, y] ∈ P for all x, y ∈ R,



124 EL HAMDAOUI AND BOUA

(c) F (x) ◦ F (y)∓ (x ◦ y) ∈ P for all x, y ∈ R,
(d) [F (x), F (y)] ∓ (x ◦ y) ∈ P for all x, y ∈ R, then one of the

following holds:
(i) there exists λ ∈ C such that F − λ maps R into P with (λ2 ∓

I)([x, y]) ∈ P for all x, y ∈ R;
(ii) R/P is a commutative ring.

Replacing H by −IR in the Theorem 2.6 and P by {0}, we get the
following corollary:

Corollary 2.9. If R is a prime ring admitting a strong commutativity
preserving (SCP) generalized derivation F associated with a nonzero
derivation d, then one of the following assertions holds:

(1) There exists λ ∈ C such that F (x) = λx for all x ∈ R with
λ2 = 1;

(2) R is a commutative ring.

Replacing H by −IR in the theorem 2.7 and P by {0}, we obtain
the following corollary:

Corollary 2.10. Let R be a prime ring. If R admits a generalized
derivation F associated with a nonzero derivation d, such that any one
of the following assertions hold:

(a) F (x) ◦ F (y) = [x, y] for all x, y ∈ R,
(b) F (x) ◦ F (y) = x ◦ y for all x, y ∈ R,
(c) [F (x), F (y)] = x ◦ y for all x, y ∈ R,

then one of the following holds:
(i) There exists λ ∈ C such that F (x) = λx for all x ∈ R with λ2 = 1;
(ii) R is a commutative ring.
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