- Weeks KL, Bernardo BC, Ooi JY, Patterson NL, McMullen JR. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol. 2017; 1000:187-210. doi: 10.1007/978-981-10-4304-8_12. [PMID: 29098623].
- Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res. 2019;4(3):223-40. doi: 10.1080/20961790.2019.1633761. [PMID: 31489388]. [PMCID: PMC6713129].
- Millar LM, Fanton Z, Finocchiaro G, Sanchez-Fernandez G, Dhutia H, Malhotra A, et al. Differentiation between athlete’s heart and dilated cardiomyopathy in athletic individuals. Heart. 2020;106(14):1059-65. doi: 10.1136/heartjnl-2019-316147. [PMID: 32341137].
- Bass-Stringer S, Tai CM, McMullen JR. IGF1–PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. J Sport Health Sci. 2021;10(6):637-47. doi: 10.1016/j.jshs.2020.11.009. [PMID: 33246162]. [PMCID: PMC8724616].
- Bullard T, Ji M, An R, Trinh L, Mackenzie M, Mullen SP. A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC public health. 2019;19(1):1-11. doi: 10.1186/s12889-019-6877-z. [PMID: 31126260]. [PMCID: PMC6534868].
- Astani K, Bashiri J, Pourrazi H, Nourazar MA. Effect of high-intensity interval training and coenzyme Q10 supplementation on cardiac apoptosis in obese male rats. ARYA Atherosclerosis J. 2022;18:1-9. doi: 10.22122/ARYA.V18I0.2459.
- Ghardashi-Afousi A, Davoodi M, Keshtkar-Hesamabadi B, Asvadi-Fard M, Bigi MAB, Izadi MR, et al. Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J Diabetes Complications. 2020;34(1):107469. doi: 10.1016/j.jdiacomp.2019.107469. [PMID: 31706805].
- Gillen JB, Gibala MJ. Interval training: a time-efficient exercise strategy to improve cardiometabolic health. Appl Physiol Nutr Metab. 2018;43(10):iii-iv. doi: 10.1139/apnm-2018-0453. [PMID: 30255712].
- Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, et al. Key player in cardiac hypertrophy, emphasizing the role of toll-like receptor 4. Front Cardiovasc Med. 2020;7:579036. doi: 10.3389/fcvm.2020.579036. [PMID: 33324685]. [PMCID: PMC7725871].
- Bernardo BC, Ooi JY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev. 2018;98(1):419-75. doi: 10.1152/physrev.00043.2016. [PMID: 29351515].
- de Jaime-Soguero A, Abreu de Oliveira WA, Lluis F. The pleiotropic effects of the canonical Wnt pathway in early development and pluripotency. Genes. 2018;9(2):93. doi: 10.3390/genes9020093. [PMID: 29443926]. [PMCID: PMC5852589].
- Sidrat T, Rehman Z-U, Joo M-D, Lee K-L, Kong I-K. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci. 2021;22(4):1854. doi: 10.3390/ijms22041854. [PMID: 33673357]. [PMCID: PMC7918746].
- Schaefer KN, Peifer M. Wnt/Beta-catenin signaling regulation and a role for biomolecular condensates. Dev Cell. 2019;48(4):429-44. doi: 10.1016/j.devcel.2019.01.025. [PMID: 30782412]. [PMCID: PMC6386181].
- Haybar H, Khodadi E, Shahrabi S. Wnt/β-catenin in ischemic myocardium: interactions and signaling pathways as a therapeutic target. Heart Fail Rev. 2019;24(3):411-9. doi: 10.1007/s10741-018-9759-z. [PMID: 30539334].
- Wang J, Gong M, Zuo S, Xu J, Paul C, Li H, et al. WNT11-conditioned medium promotes angiogenesis through the activation of non-canonical WNT-PKC-JNK signaling pathway. Genes. 2020;11(11):1277. doi: 10.3390/genes11111277. [PMID: 33137935]. [PMCID: PMC7694138].
- Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, et al. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol. 2019;15(6):339-55. doi: 10.1038/s41574-019-0170-1. [PMID: 30814687]. [PMCID: PMC6520125].
- Amin H, Vachris J, Hamilton A, Steuerwald N, Howden R, Arthur ST. GSK3β inhibition and LEF1 upregulation in skeletal muscle following a bout of downhill running. J Physiol Sci. 2014;64(1):1-11. doi: 10.1007/s12576-013-0284-5. [PMID: 23963660].
- Pourrazi H, Asgharpour-Arshad M, Gholami F, Abbasi S. Effect of high-intensity interval training on apoptotic gene expression in rat myocardial tissue. Gene, Cell and Tissue. 2020;7(2). doi: 10.5812/gct.101963.
- Astorino TA, Schubert MM. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur J Appl Physiol. 2018;118(1):51-63. doi: 10.1007/s00421-017-3756-0. [PMID: 29124325].
- Dorling J, Broom DR, Burns SF, Clayton DJ, Deighton K, James LJ, et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: the modulating effect of adiposity, sex, and habitual physical activity. Nutrients. 2018;10(9):1140. doi: 10.3390/nu10091140. [PMID: 30131457]. [PMCID: PMC6164815].
- Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, et al. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019;9(1):1-8. doi: 10.1038/s41598-019-42023-1. [PMID: 30948751]. [PMCID: PMC6449502].
- Aschenbach WG, Ho RC, Sakamoto K, Fujii N, Li Y, Kim Y-B, et al. Regulation of Dishevelled and β-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3β signaling pathway. Am J Physiol Endocrinol Metab. 2006;291(1):E152-E8. doi: 10.1152/ajpendo.00180.2005. [PMID: 16478782].
- Petropoulos H, Skerjanc IS. β-Catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem. 2002;277(18):15393-9. doi: 10.1074/jbc.M112141200. [PMID: 11856745].
- Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara T. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem. 2014;289(11):7399-412. doi: 10.1074/jbc.M113.539247. [PMID: 24482229]. [PMCID: PMC3953255].
- Vissing K, McGee S, Farup J, Kjølhede T, Vendelbo M, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training‐accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355-66. doi: 10.1111/j.1600-0838.2011.01395.x. [PMID: 23802289].
- Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biolo Chem. 2002;277(34):30935-41. doi: 10.1074/jbc.M201919200. [PMID: 12063252].
- Zhou Q, Deng J, Yao J, Song J, Meng D, Zhu Y, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713. doi: 10.1016/j.ebiom.2021.103713. [PMID: 34837851]. [PMCID: PMC8626841].
- Haque ZK, Wang D-Z. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci. 2017;74(6):983-1000. doi: 10.1007/s00018-016-2373-0. [PMID: 27714411]. [PMCID: PMC6990138].
|