
تعداد نشریات | 31 |
تعداد شمارهها | 777 |
تعداد مقالات | 7,394 |
تعداد مشاهده مقاله | 15,271,688 |
تعداد دریافت فایل اصل مقاله | 7,438,433 |
On a question concerning the Cohen's theorem | ||
Journal of Algebra and Related Topics | ||
دوره 11، شماره 1، شهریور 2023، صفحه 49-53 اصل مقاله (264.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2022.22922.1432 | ||
نویسندگان | ||
S. S. Pourmortazavi1؛ S. Keyvani* 2 | ||
1Department of Mathematics, Guilan University, Rasht, Iran | ||
2Department of Mathematics, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali Branch, Iran | ||
چکیده | ||
Let $R$ be a commutative ring with identity, and let $M$ be an $R$-module. The Cohen's theorem is the classic result that a ring is Noetherian if and only if its prime ideals are finitely generated. Parkash and Kour obtained a new version of Cohen's theorem for modules, which states that a finitely generated $R$-module $M$ is Noetherian if and only if for every prime ideal $p$ of $R$ with $Ann(M) \subseteq p$, there exists a finitely generated submodule $N$ of $M$ such that $pM \subseteq N \subseteq M(p)$, where $M(p) = \{x \in M | sx \in pM \,\,\textit{for some} \,\, s \in R \backslash p\}$. In this paper, we prove this result for some classes of modules. | ||
کلیدواژهها | ||
Noetherian modules؛ Cohen's theorem؛ $X$-injective | ||
مراجع | ||
1. H. Ansari-Toroghy and S. Keyvani, On the maximal spectrum of a module and zariski topology, Bull. Malays. Math. Sci. Soc., (1) 38 (2015), 303-316. 2. H. Ansari-Toroghy, S. Keyvani, and S. S. Pourmortazavi, Max-weak multiplication modules, Far East Journal of Mathematical Sciences, (1) 66 (2012), 87-96. 3. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, Modules for which the natural map of the maximal spectrum is surjective, Colloq. Math. 2 (2010), 217-227. 4. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of X-injective modules, Comm. Algebra, (7) 38 (2010), 2606-2621. 5. A. Azizi, Weak multiplication modules, Czechoslovak Math. J, (3) 53 (2003), 529-534. 6. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. D, (1) 17 (1950), 27-42. 7. Z. A. El-Bast and P. F. Smith. Multiplication modules, Comm. Algebra, (4) 16(1988), 755-779. 8. C. P. Lu. Prime submodules of modules, Comment. Math. Univ. St. Pauli, (1) 33 (1984), 61-69. 9. C. P. Lu. Spectra of modules, Comm. Algebra, (10) 23 (1995), 3741-3752. 10. C. P. Lu. Saturations of submodules, Comm. Algebra, (6) 31 (2003), 2655-2673. 11. R. L. McCasland, M. E. Moore, and P. F. Smith. On the spectrum of a module over a commutative ring, Comm. Algebra, (1) 25 (1997), 79-103. 12. R. Ovlyaee-Sarmazde and S. Maleki-Roudposhti. On Max-injective modules, J. Algebra Relat. Topics, (1) 1 (2013), 57-66. 13. A. Parkash and S. Kour. On Cohen's theorem for modules, Indian J. Pure Appl.Math., (3) 52 (2021), 869-871. 14. P. F. Smith. Concerning a theorem of I. S. Cohen, Analele stiinti ce ale Universitatii Ovidius Constanta, XIth National Conference of Algebra (Constanta,1994), National Conference of Algebra, (1994), 160-167. | ||
آمار تعداد مشاهده مقاله: 231 تعداد دریافت فایل اصل مقاله: 214 |