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ON A QUESTION CONCERNING THE COHEN’S
THEOREM

S. S. POURMORTAZAVI AND S. KEYVANI∗

Abstract. Let R be a commutative ring with identity, and let
M be an R-module. The Cohen’s theorem is the classic result
that a ring is Noetherian if and only if its prime ideals are finitely
generated. Parkash and Kour obtained a new version of Cohen’s
theorem for modules, which states that a finitely generated R-
module M is Noetherian if and only if for every prime ideal p of
R with Ann(M) ⊆ p, there exists a finitely generated submodule
N of M such that pM ⊆ N ⊆ M(p), where M(p) = {x ∈ M |sx ∈
pM for some s ∈ R\p}. In this paper, we prove this result for
some classes of modules.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity
and all modules are unitary. Let N and K be two submodules of
an R-module M . Then the colon ideal of N into K is defined to be
(N :R K) = {r ∈ R : rK ⊆ N}. Particularly, we use AnnR(M)
instead of (0 :R M) and (N :R m) instead of (N :R Rm), where Rm
is the cyclic submodule of M generated by an element m ∈ M . A
submodule P of an R-module M is called prime or p-prime if P 6= M
and for p = (P :R M), whenever re ∈ P for r ∈ R and e ∈ M , we
have r ∈ p or e ∈ P (see [8]). If Q is a maximal submodule of M , then
Q is a prime submodule and (Q :R M) = m is a maximal ideal of R.
In this case, we say Q is an m-maximal submodule of M (see [9]). If
p ∈ Spec(R) (resp. m ∈ Max(R)), then Specp(M) (resp. Maxm(M))
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is the set of all p-prime (resp. m-maximal) submodules of M (see
[11, 9]). Also M(p) = Sp(pM) = {x ∈ M |sx ∈ pM for some s ∈ R\p}
is the contraction of pMp in M (see [10]). Early in 1950, Cohen showed
that a ring R is Noetherian if and only if every prime ideal of R is
finitely generated (see [6, Theorem 2]). In 1994, Smith proved that for
a finitely generated module M , the following statements are equivalent
(see [14]).

(1) M is Noetherian;
(2) pM is finitely generated for each prime ideal p of V (AnnR(M);
(3) M(p) is finitely generated for each prime ideal p of V (AnnR(M)).

In 2021, Parkash and Kour generalized the Smith’s result on finitely
generated modules as follows (see [13]). Let M be a finitely generated
R-module, then the following are equivalent.

(1) M is Noetherian;
(2) For every prime ideal p of V (AnnR(M)), there exists a finitely

generated submodule N of M such that pM ⊆ N ⊆M(p).

In [13], there is a natural question which says that whether for finitely
generated module M , the following statements are equivalent.

(1) M is Noetherian;
(2) For every prime ideal p of V (AnnR(M)), there exists a finitely

generated submodule N of M such that (N :R M) = p.

Parkash and Kour have given a negative answer to this question in [13,
Example 2.4]. We will give a positive answer to the above question
under some conditions (see Theorem 2.2).

2. Main results

Remark 2.1. Let M be an R-module.

(a) M is said to be X-injective if |Specp(M)| ≤ 1 for every prime
ideal p of R (see [4, Definition 3.2]).

(b) M is said to be a multiplication (weak multiplication) module
if for every submodule (prime submodule) N of M there exists
an ideal I of R such that N = IM (see [7, 5]).

(c) Consider the finitely generated Z-module M =
⊕n

i=1 Zpi , where
pi’s are distinct positive prime integers. Then SpecZ(M) =⋃n

i=1 Spec(piZ)(M) =
⋃n

i=1{piM}. This implies that M is an
X-injective Z-module by part (a).

Theorem 2.2. Let M be an X-injective R-module. Then the following
are equivalent.

(a) M is Noetherian;
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(b) For every prime ideal p of V (AnnR(M)), there exists a finitely
generated submodule N of M such that (N :R M) = p.

Proof. ((b)⇒ (a)). Let p be a maximal ideal of R and p ∈ V (AnnR(M)).
Then by hypothesis, there exists a finitely generated submodule N of M
such that (N :R M) = p. This implies that pM ⊆ N and Hence pM 6=
M . So that (pM :R M) = p. Since p is a maximal ideal of R, pM is a
p-prime submodule of M by [8, Proposition 2]. Now by [3, Proposition
3.3], there is a maximal submodule H of M such that (H :R M) = p.
Since p is maximal ideal, then by [8, Proposition 4], H and N are prime
submodules of M . On the other hand, M is X-injective, so that H = N
by [4, Lemma 3.1]. It follows that H is a finitely generated submodule
of M . But M/H is cyclic and hence M is finitely generated. Now we
assume that M is not a Noetherian R-module. Then there exists a
proper submodule K of M such that it is not finitely generated. Set
Σ = {L ⊆ M |L is a non-finitely generated submodule of M}. Firstly,
Σ 6= ∅, because K ∈ Σ. Secondly, if {Li}i∈I is a chain of elements
of Σ, then

⋃
i∈I Li is non-finitely generated. Now by Zorne lemma, Σ

has a maximal element. Let L be a maximal element of Σ. Hence L
is a prime submodule of M by [8, Proposition 9]. Set (L :R M) = q.
Therefore by hypothesis, we have (L′ :R M) = q for some finitely
generated submodule L′ of M . Hence (L :R M)M = (L′ :R M)M .
But by [4, Corollary 3.12], M is multiplication. So that we have
L = (L :R M)M = (L′ :R M)M = L′. This means that L is finitely
generated, which is a contradiction.
((a)⇒ (b)). This follows from [10, Corollary 3.8]. �

Corollary 2.3. Let M be an R-module, and suppose that one of the
following hold:

(1) M is a multiplication module;
(2) M is a weak multiplication module;
(3) M is a locally cyclic module.

Then the following are equivalent.

(a) M is Noetherian;
(b) For every prime ideal p of V (AnnR(M)), there exists a finitely

generated submodule N of M such that (N :R M) = p.

Proof. This is an immediate result of Theorem 2.2 by [4, Proposition
3.3 and 3.10]. �

The following example shows that the condition “M is X-injective”
of Theorem 2.2 can not be dropped.
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Example 2.4. Let F be a field and R = F [[x1, x2, ...]] be the power
series ring over F with intermediates x1, x2, ... and I =< x2

1, x
2
2, ... >

and J =< x2, x3, ... > be two ideals of R. Set M = R
I
×

R
I
J
I

. Then we

have the following.

(a) Spec(R/I) = Max(R/I) = {p
I
}, where p =< x1, x2, ... >.

(b) M is a finitely generated R
I

-module.

(c) N = R
I
×

p
I
J
I

is a finitely generated R
I

-submodule of M and

(N :R
I
M) = p

I
.

(d) p
I
M = p

I
×

p
I
J
I

is a non-finitely generated R
I

-submodule of M and
p
I
M :R

I
M) = p

I
.

(e) M is not a Noetherian R
I

-module and it is not an X-injective
R
I

-module by part (c), (d), [8, Proposition 2] and [4, Lemma
3.1].

Remark 2.5. Let M be an R-module. Then

(a) M is said to be Max-injective if |Maxp(M)| ≤ 1 for every max-
imal ideal p of R (see [1, 12]).

(b) M is said to be Max-weak multiplication R-module if either
Max(M)) = ∅ or Max(M)) 6= ∅ and for every maximal sub-
module P of M , P = IM for some ideal I of R (see [2]).

In [12], it is proved that these two classes (Max-injective and Max-
weak multiplication) of modules are the same. Since every X-injective
module is a Max-injective module, it seems possible to generalize The-
orem 2.2 for Max-injective modules. Therefore, it is natural to ask the
following question.

Question. Let M be a Max-injective R-module and let for every prime
ideal p of V (AnnR(M)), there exists a finitely generated submodule N
of M such that (N :R M) = p. Is M a Noetherian R-module?
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