تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,122 |
تعداد مشاهده مقاله | 10,275,068 |
تعداد دریافت فایل اصل مقاله | 6,910,651 |
ارزیابی مقاومت فشاری بتن با استفاده از روش های سرعت پالس اولتراسونیک و مقاومت الکتریکی | ||
تحقیقات بتن | ||
دوره 16، شماره 1 - شماره پیاپی 41، فروردین 1402، صفحه 45-55 اصل مقاله (791.51 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2022.22227.1573 | ||
نویسندگان | ||
مصطفی قرمان1؛ علیرضا آذریون* 2؛ غلامرضا قهرمانی2 | ||
1دانشجوی ارشد سازه، دانشگاه ملایر | ||
2استادیار، دانشکده عمران و معماری، دانشگاه ملایر | ||
چکیده | ||
مقاومت فشاری بتن از مهمترین خواص آن درنظرگرفته میشود و معمولاً شمای کلی از کیفیت بتن را ارائه میدهد، زیرا بهطور مستقیم به ریزساختار خمیر سیمان بستگی دارد. ارزیابی مقاومت فشاری بتن به روشهای مخرب و غیرمخرب انجام میشود. روشهای غیرمخرب، با تعداد آزمونههای بهمراتب کمتر میتوانند تخمین مناسبی از مقاومت فشاری بتن بهدست دهند. در این تحقیق از روشهای غیرمخرب اولتراسونیک و مقاومت الکتریکی برای تخمین مقاومت فشاری آزمونههای بتن معمولی با سه نسبت متفاوت آب به سیمان استفاده شد و مدلهای ریاضی برای تخمین مقاومت فشاری توسط این روشها ارائه و از لحاظ دقت با هم مقایسه شدند. از نرمافزار آماری SPSS برای تحلیل دادههای آزمایشها استفاده شد. مدلهای ریاضی خطی و غیرخطی بیانگر رابطۀ بین پارامترهای مقاومت الکتریکی، سرعت پالس اولتراسونیک و مقاومت فشاری برای هریک از نسبتهای آب به سیمان به وسیلۀ نرمافزار استخراج شدند. نتایج نشان داد ترکیب دو روش سرعت پالس اولتراسونیک و مقاومت الکتریکی برای تخمین مقاومت فشاری در مقایسه با تنها یک روش، از دقت بیشتری برخوردار میباشد. براساس نتایج حاصله، شکل اصلاح شدۀ تابع نمایی با محدوده ضریب تعیین 83/0-63/0 و میانگین قدرمطلق خطای نسبی 5/6-3/2 درصد و تابع چندجملهای با محدوده ضریب تعیین 89/0-63/0 و میانگین قدرمطلق خطای نسبی 7-2/3 درصد دارای عملکرد بهتری نسبت به سایر مدلها میباشند. | ||
کلیدواژهها | ||
سرعت پالس اولتراسونیک؛ مقاومت الکتریکی؛ روشهای غیرمخرب؛ همبستگی؛ مقاومت فشاری | ||
مراجع | ||
[1] American Concrete Institute. (2013). Report on nondestructive test methods for evaluation of concrete in structures. ACI 228.2R-13.
[2] American Concrete Institute. (2019). Report on Methods for Estimating In-Place Concrete Strength. ACI 228.1R-19. [3] Malhotra, V. M., & Carino, N. J. (2003). Handbook on nondestructive testing of concrete. CRC press.
[4] Hadianfard, M. A., & Jafari, S. (2016). Prediction of lightweight aggregate concrete compressive strength using ultrasonic pulse velocity test through gene expression programming. Scientia Iranica. Transaction C, 23(6), 2506. [5] Wei, X., Xiao, L., & Li, Z. (2012). Prediction of standard compressive strength of cement by the electrical resistivity measurement. Construction and Building Materials, 31, 341-346.
[6] Breysse, D., Balayssac, J. P., Biondi, S., Corbett, D., Goncalves, A., Grantham, M. & Sbartai, Z. M. (2019). Recommendation of RILEM TC249-ISC on nondestructive in situ strength assessment of concrete. Materials and Structures, 52(4), 1-21.
[7] Breysse, P. D. P. J. B., & Balayssac, J. P. (2021). Non-destructive in situ strength assessment of concrete. Springer International Publishing.
[8] Breysse, D. (2012). Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction and Building Materials, 33, 139-163.
[9] Mahmoudabadi, E. (2014). Nondestructive evaluation of plain and polymer concrete. Ph.D. thesis, The University of Arizona.
[10] Qasrawi, H. Y. (2000). Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and concrete research, 30(5), 739-746.
[11] Balayssac, J. P., & Garnier, V. (Eds.). (2017). Non-destructive testing and evaluation of civil engineering structures. Elsevier.
[12] Carvalho, C. H. D., Severo Junior, J. B., Macedo, M. C. S. S., Griza, S., de Andrade, C. E. C., Dos Santos, A. A., & Barreto, L. S. (2014). Application of statistical techniques to evaluate the reliability of ultrasonic and rebound hammer measurements of compressive strength in the concrete of bridges. Scientific Research and Essays, 9(6), 136-144.
]13[ بهمنی، پویا و مدندوست، رحمت (1394). تخمین مقاومت بتن به روش های ترکیبی اولتراسونیک و چکش اشمیت به کمک روش های غیر خطی رگرسیون و شبکه عصبی. پایان نامه کارشناسی ارشد، موسسه آموزش عالی پویندگان دانش.
[14] Sbartaï, Z. M., Laurens, S., Elachachi, S. M., & Payan, C. (2012). Concrete properties evaluation by statistical fusion of NDT techniques. Construction & Building Materials, 37, 943-950.
[15] Mohammed, B. S., & Adamu, M. (2019). Non-destructive evaluation of nano silica-modified roller-compacted rubbercrete using combined SonReb and response surface methodology. Road Materials and Pavement Design, 20(4), 815-835.
[16] Tanigawa, Y., Baba, K., & Mori, H. (1984). Estimation of concrete strength by combined nondestructive testing method. Special Publication, 82, 57-76.
[17] Soshiroda, T., Voraputhaporn, K., & Nozaki, Y. (2006). Early-stage inspection of concrete quality in structures by combined nondestructive method. Materials and Structures, 39(2), 149-160.
[18] Machado, M. D., Shehata, L. C. D., & Shehata, I. A. E. M. (2009). Correlation curves to characterize concretes used in Rio de Janeiro by means of non-destructive tests. Revista Ibracon de Estruturas e Materiais, 2, 100-123.
[19] Shariati, M., Ramli-Sulong, N. H., Arabnejad, M. M., Shafigh, P., & Sinaei, H. (2011). Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests. Scientific research and essays, 6(1), 213-220.
[20] Amini, K., Jalalpour, M., & Delatte, N. (2016). Advancing concrete strength prediction using non-destructive testing: Development and verification of a generalizable model. Construction & Building Materials, 102, 762-768.
[21] Hobbs, B., & Kebir, M. T. (2007). Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic science international, 167(2-3), 167-172.
[22] Fiore, A., Porco, F., Uva, G., & Mezzina, M. (2013). On the dispersion of data collected by in situ diagnostic of the existing concrete. Construction & Building Materials, 47, 208-217.
[23] Nobile, L. (2015). Prediction of concrete compressive strength by combined non-destructive methods. Meccanica, 50(2), 411-417.
[24] Miretti, R., Carrasco, M. F., Grether, R. O., & Passerino, C. R. (2004). Combined non-destructive methods applied to normal-weight and lightweight-concrete. Insight-Wigston Then Northampton, 46(12), 748-753.
[25] Candelaria, M. D. E., Kee, S. H., & Lee, K. S. (2022). Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods. Materials, 15(5), 1662.
[26] Yoo, J. K., & Ryu, D. W. (2008). A study of the evaluation of strength development property of concrete at early ages. In 3rd acf international conference-acf/vca.
[27] Pucinotti, R. (2007). The use of multiple combined non-destructive testing in the concrete strength assessment. HSNDT International 2007 on ndt. net, 1-7.
[28] Breysse, D., Soutsos, M., Moczko, A., & Laurens, S. (2010). Quantitative non-destructive assessment of in situ concrete properties: the key question of calibration. Structural faults and repair, Edinburgh, 1517.
[29] Muuml; rsel, E. (2009). Prediction of the compressive strength of vacuum processed concretes using artificial neural network and regression techniques. Scientific Research and Essays, 4(10), 1057-1065.
]30[ خانزادی، مصطفی: تدین،محسن: ملکی،محمد سعید: ذهبی،سجاد وتدین، محمدحسین (1396). اندازهگیری مقاومتویژه الکتریکی بتن با روشهای حجمی، سطحی، گالواپالس و هدایت الکتریکی. مجله تحقیقات بتن، سال دهم، شماره سوم، ص 19-28.
[31] Breysse, D. (Ed.). (2012). Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques: State-of-the-Art Report of the RILEM Technical Committee 207- INR.
[32] ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. West Conshohocken: ASTM.
[33] Gebretsadik, B. T. (2013). Ultrasonic pulse velocity investigation of steel fiber reinforced self-compacted concrete. M.Sc. thesis, University of Nevada
[34] Huang, Q., Gardoni, P., & Hurlebaus, S. (2011). Predicting Concrete Compressive Strength Using Ultrasonic Pulse Velocity and Rebound Number. ACI Materials Journal, 108(4). | ||
آمار تعداد مشاهده مقاله: 332 تعداد دریافت فایل اصل مقاله: 374 |