تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,380 |
تعداد دریافت فایل اصل مقاله | 6,897,986 |
Φ-Connes Amenability of l1-Munn Algebras | ||
Computational Sciences and Engineering | ||
دوره 2، شماره 2، آذر 2022، صفحه 201-209 اصل مقاله (1.09 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2023.23085.1037 | ||
نویسندگان | ||
Samaneh Javadi* ؛ Ali Ghaffari | ||
Department of Mathematics, University of Semnan, Semnan, Iran | ||
چکیده | ||
Generalizing the notion of Connes amenability for LM(A, P, m, n), we study Φ- Connes amenability of LM(A, P, m, n) that Φ is a character on LM(A, P, m, n). Among the other things, we study when Φ- Connes amenability of LM(A, P, m, n) is equivalent to φ- Connes amenability of A where φ is the unique character on A associated to Φ. We apply this results to semigroup algebras. | ||
کلیدواژهها | ||
Amenability؛ Derivation؛ Invariant mean | ||
مراجع | ||
[1] Johnson, B. E. (1972). Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127.
[2] Runde, V. (2001). Amenability for dual Banach algebras, Studia Math. 148, 47-66.
[3] Runde, V. (2003). Connes amenability and normal virtual diagonals for measure algebras I, J. London Math. Soc. 67, 643-656.
[4] Esslamzadeh, G. H. (1999). Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal. 161, 364-383.
[5] Munn, W. D. (1955), On semigroup algebras, Math. Proc. Cambridge Philos. Soc. 51, 1-15.
[6] Esslamzadeh, G. H. (2004). Representation theory and positive functionals of involutive l1 -Munn algebras, Semigroup Forum. 69, 51-62.
[7] Esslamzadeh, G. H. (2000). Duals and topological center of a class of matrix algebras with applications, Proc. Amer. Math. Soc. 128, 3493-3503.
[8] Duncan, J. & Paterson, A. L. T. (1990). Amenability for discrete convolution semigroup algebras, Math. Scand. 66, 141-146.
[9] Habibian, F., Mirzasani, N. & R. Nasr Isfahani, (2021). Homological properties of l 1-Munn algebras, Revista de Real Academia deiencias Exactas, Fisicasy Naturales. Seri A. Matematicas. 62 ,1-14.
[10] Soroushmehr, M. (2021). A note on weak amenability of semigroup algebras, Semigroup Forum 102, 543-52.
[11] Ghaffari, A., Javadi, S. (2017). ϕ-Connes amenability of dual Banach algebras, Bull. Iran. Math. Soc. 43, 25-39.
[12] Ghaffari, A., Javadi, S. & Tamimi, E. (2022) Connes amenability of l1-Munn algebras, Tamkang Journal of Mathematics 53, 259-266.
[13] Esslamzadeh, G. H. (2017). Homomorphisms of l1-Munn algebras and Rees matrix semigroup algebras, Semigroup Forum 95, 1-12.
[14] Soroushmehr, M. (2015). Homomorphisms of l1-Munn algebras and applications to semigroup algebras, Bull. Austral. Math. Soc. 92, 115-122.
[15] Kaniuth, E., Lau, A. T. & J. Pym, (2008). On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144, 85-95.
[16] Runde, V. (2004). Dual Banach algebras: Connes amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand. 95, 124-144.
[17] Daws, M. (2006). Connes amenability of bidual and weighted semigroup algebras, Math. Scand. 99, 217-246.
[18] Dales, H. G., Lau, A. T. M. & Strauss, D. (2010). Banach algeras on semigroups and on their compactifications, Memoirs Amer. Math. Soc. 205, 1-165. | ||
آمار تعداد مشاهده مقاله: 179 تعداد دریافت فایل اصل مقاله: 250 |