تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,072 |
تعداد مشاهده مقاله | 10,150,419 |
تعداد دریافت فایل اصل مقاله | 6,858,144 |
Three Bounds For Identifying Code Number | ||
Journal of Algebra and Related Topics | ||
دوره 10، شماره 2، اسفند 2022، صفحه 61-67 اصل مقاله (287.92 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2022.20661.1321 | ||
نویسندگان | ||
E. Vatandoost* ؛ K. Mirasheh | ||
Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. | ||
چکیده | ||
Let $G=(V, E)$ be a simple graph. A set $C$ of vertices $G$ is an identifying set of $G$ if for every two vertices $x$ and $y$ belong to $V$ the sets $N_{G}[x] \cap C$ and $N_{G}[y] \cap C$ are non-empty and different. Given a graph $G,$ the smallest size of an identifying set of $G$ is called the identifying code number of $G$ and is denoted by $\gamma^{ID}(G).$ Two vertices $x$ and $y$ are twins when $N_{G}[x]=N_{G}[y].$ Graphs with at least two twin vertices are not identifiable graphs. In this paper, we present three bounds for identifying code number. | ||
کلیدواژهها | ||
code؛ Strongly؛ Rayleigh quotient | ||
آمار تعداد مشاهده مقاله: 148 تعداد دریافت فایل اصل مقاله: 213 |