| تعداد نشریات | 32 |
| تعداد شمارهها | 813 |
| تعداد مقالات | 7,870 |
| تعداد مشاهده مقاله | 36,238,043 |
| تعداد دریافت فایل اصل مقاله | 8,278,459 |
A posteriori error analysis for the Cahn-Hilliard equation | ||
| Journal of Mathematical Modeling | ||
| مقاله 4، دوره 10، شماره 4، اسفند 2022، صفحه 437-452 اصل مقاله (185.5 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2022.22244.1960 | ||
| نویسندگان | ||
| Ali Mesforush* 1؛ Stig Larsson2 | ||
| 1Faculty of Mathematical Sciences, Shahrood University of Thechnology, Shahrood, Iran | ||
| 2Department of Mathematical Sciences, Chalmers University of Technology, Goteborg, Sweden | ||
| چکیده | ||
| The Cahn-Hilliard equation is discretized by a Galerkin finite element method based on continuous piecewise linear functions in space and discontinuous piecewise constant functions in time. A posteriori error estimates are proved by using the methodology of dual weighted residuals. | ||
| کلیدواژهها | ||
| Cahn-Hilliard؛ finite element؛ error estimate؛ a posteriori؛ dual weighted residuals | ||
|
آمار تعداد مشاهده مقاله: 400 تعداد دریافت فایل اصل مقاله: 440 |
||