A posteriori error analysis for the Cahn-Hilliard equation

Ali Mesforush ${ }^{\dagger *}$, Stig Larsson ${ }^{\ddagger}$
${ }^{\dagger}$ Faculty of Mathematical Sciences, Shahrood University of Thechnology, Shahrood, Iran
${ }^{\ddagger}$ Department of Mathematical Sciences, Chalmers University of Technology, Goteborg, Sweden
Email(s): ali.mesforush@shahroodut.ac.ir, stig@chalmers.se

Abstract

The Cahn-Hilliard equation is discretized by a Galerkin finite element method based on continuous piecewise linear functions in space and discontinuous piecewise constant functions in time. A posteriori error estimates are proved by using the methodology of dual weighted residuals.

Keywords: Cahn-Hilliard, finite element, error estimate, a posteriori, dual weighted residuals.
AMS Subject Classification 2010: 34A34, 65L05.

1 Introduction

We consider the Cahn-Hilliard equation

$$
\begin{array}{rlrl}
u_{t}-\Delta w & =0 & & \text { in } \Omega \times[0, T], \\
w+\varepsilon \Delta u-f(u)=0 & & \text { in } \Omega \times[0, T], \\
\frac{\partial u}{\partial v}=0, \frac{\partial w}{\partial v} & =0 & & \text { on } \partial \Omega \times[0, T], \tag{1}\\
u(\cdot, 0) & =g_{0} & & \text { in } \Omega,
\end{array}
$$

where Ω is a polygonal domain in $\mathbf{R}^{d}, d=1,2,3, u=u(x, t), w=w(x, t), \Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}, u_{t}=\frac{\partial u}{\partial t}, v$ is the exterior unit normal to $\partial \Omega$, and $\varepsilon>0$ is a small parameter. The Cahn-Hilliard equation is a model for phase separation and spinodal decomposition [3]. The nonlinearity f is the derivative of a double-well potential. A typical example is $f(u)=u^{3}-u$.

We discretize (1) by a Galerkin finite element method, which is based on continuous piecewise linear functions with respect to x and discontinuous piecewise constant functions with respect to t. This numerical method is the same as the implicit Euler time stepping combined with spatial discretization by a standard finite element method.

[^0](C) 2022 University of Guilan
http://jmm.guilan.ac.ir

We perform an a posteriori error analysis within the framework of dual weighted residuals [2]. If $J(u)$ is a given goal functional, this results in an error estimate essentially of the form

$$
|J(u)-J(U)| \leq \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\rho_{u, K} \omega_{u, K}+\rho_{w, K} \omega_{w, K}\right\}+\mathscr{R}
$$

where U denotes the numerical solution and \mathbf{T}_{n} is the spatial mesh at time level t_{n}. The terms $\rho_{u, K}, \rho_{w, K}$ are local residuals from the first and second equations in (1), respectively. The weights $\omega_{u, K}, \omega_{w, K}$ are derived from the solution of the linearized adjoint problem. The remainder \mathscr{R} is quadratic in the error.

There is an extensive literature on numerical methods for the Cahn-Hilliard equation; see, for example, [5] and [4] for a priori error estimates. Adaptive methods based on a posteriori estimates are presented in [1] and [6]. However, these estimates are restricted to spatial discretization. We are not aware of any completely discerete a posteriori error analysis.

2 Preliminaries

Here we present the methodology of dual weighted residuals [2] in an abstract form.
Let $A(\cdot ; \cdot)$ be a semilinear form; that is, it is nonlinear in the first and linear in the second variable, and $J(\cdot)$ be an output functional, not necessarily linear, defined on some function space V. Consider the variational problem: Find $u \in V$ such that

$$
\begin{equation*}
A(u ; \psi)=0 \quad \forall \psi \in V, \tag{2}
\end{equation*}
$$

and the corresponding finite element problem: Find $u_{h} \in V_{h} \subset V$ such that

$$
\begin{equation*}
A\left(u_{h} ; \psi_{h}\right)=0 \quad \forall \psi_{h} \in V_{h} . \tag{3}
\end{equation*}
$$

We suppose that the derivatives of A and J with respect to the first variable u up to order three exist and are denoted by

$$
A^{\prime}(u ; \varphi), A^{\prime \prime}(u ; \psi, \varphi), A^{\prime \prime \prime}(u ; \xi, \psi, \varphi),
$$

and

$$
J^{\prime}(u ; \varphi), J^{\prime \prime}(u ; \psi, \varphi), J^{\prime \prime \prime}(u ; \xi, \psi, \varphi)
$$

respectively, for increments $\varphi, \psi, \xi \in V$. Here we use the convention that the forms are linear in the variables after the semicolon.

We want to estimate $J(u)-J\left(u_{h}\right)$. Introduce the dual variable $z \in V$ and define the Lagrange functional

$$
\mathscr{L}(u ; z):=J(u)-A(u ; z),
$$

and seek the stationary points $(u, z) \in V \times V$ of $\mathscr{L}(\cdot ; \cdot)$; that is,

$$
\begin{equation*}
\mathscr{L}^{\prime}(u ; z, \varphi, \psi)=J^{\prime}(u ; \varphi)-A^{\prime}(u ; z, \varphi)-A(u ; \psi)=0 \quad \forall \varphi, \psi \in V . \tag{4}
\end{equation*}
$$

By choosing $\varphi=0$, we retrieve (2). By taking $\psi=0$, we identify the linearized adjoint equation to find $z \in V$ such that

$$
\begin{equation*}
J^{\prime}(u ; \varphi)-A^{\prime}(u ; z, \varphi)=0 \quad \forall \varphi \in V . \tag{5}
\end{equation*}
$$

The corresponding finite element problem is: Find $\left(u_{h}, z_{h}\right) \in V_{h} \times V_{h}$ such that

$$
\begin{equation*}
\mathscr{L}^{\prime}\left(u_{h} ; z_{h}, \varphi_{h}, \psi_{h}\right)=J^{\prime}\left(u_{h} ; \varphi_{h}\right)-A^{\prime}\left(u_{h} ; z_{h}, \varphi_{h}\right)-A\left(u_{h} ; \psi_{h}\right)=0 \quad \forall \varphi_{h}, \psi_{h} \in V_{h} . \tag{6}
\end{equation*}
$$

By choosing $\varphi_{h}=0$, we retrieve (3). By taking $\psi_{h}=0$, we identify the linearized adjoint equation to find $z_{h} \in V_{h}$ such that

$$
\begin{equation*}
J^{\prime}\left(u_{h} ; \varphi_{h}\right)-A^{\prime}\left(u_{h} ; z_{h}, \varphi_{h}\right)=0 \quad \forall \varphi_{h} \in V_{h} . \tag{7}
\end{equation*}
$$

We quote three propositions from [2, Ch. 6].
Proposition 1. Let $L(\cdot)$ be a three times differentiable functional defined on a vector space X, which has a stationary point $x \in X$, that is,

$$
L^{\prime}(x ; y)=0 \quad \forall y \in X
$$

Suppose that on a finite dimensional subspace $X_{h} \subset X$ the corresponding Galerkin approximation,

$$
L^{\prime}\left(x_{h} ; y_{h}\right)=0 \quad \forall y_{h} \in X_{h},
$$

has a solution, $x_{h} \in X_{h}$. Then there holds the error representation

$$
L(x)-L\left(x_{h}\right)=\frac{1}{2} L^{\prime}\left(x_{h} ; x-y_{h}\right)+\mathscr{R} \quad \forall y_{h} \in X_{h},
$$

with a remainder term \mathscr{R}, which is cubic in the error $e:=x-x_{h}$,

$$
\mathscr{R}:=\frac{1}{2} \int_{0}^{1} L^{\prime \prime \prime}\left(x_{h}+s e ; e, e, e\right) s(s-1) \mathrm{d} s .
$$

Since

$$
\mathscr{L}(u ; z)-\mathscr{L}\left(u_{h} ; z_{h}\right)=J(u)-J\left(u_{h}\right),
$$

at stationary points $(u, z),\left(u_{h}, z_{h}\right)$, Proposition 1 yields the following result for the Galerkin approximation (3) of the variational equation (2).

Proposition 2. For any solutions u and u_{h} of equations (2) and (3) we have the error representation

$$
J(u)-J\left(u_{h}\right)=\frac{1}{2} \rho\left(u_{h} ; z-\varphi_{h}\right)+\frac{1}{2} \rho^{*}\left(u_{h} ; z_{h}, u-\psi_{h}\right)+\mathscr{R}^{(3)} \quad \forall \varphi_{h}, \psi_{h} \in V_{h},
$$

where z and z_{h} are solutions of the adjoint problems (5) and (7) and

$$
\begin{aligned}
\rho\left(u_{h} ; \cdot\right) & =-A\left(u_{h} ; \cdot\right) \\
\rho^{*}\left(u_{h} ; z_{h}, \cdot\right) & =J^{\prime}\left(u_{h} ; \cdot\right)-A^{\prime}\left(u_{h} ; z_{h}, \cdot\right),
\end{aligned}
$$

and, with $e_{u}=u-u_{h}, e_{z}=z-z_{h}$, the remainder is

$$
\begin{aligned}
\mathscr{R}^{(3)}= & \frac{1}{2} \int_{0}^{1}\left(J^{\prime \prime \prime}\left(u_{h}+s e_{u} ; e_{u}, e_{u}, e_{u}\right)-A^{\prime \prime \prime}\left(u_{h}+s e_{u} ; z_{h}+s e_{z}, e_{u}, e_{u}, e_{u}\right)\right. \\
& \left.-3 A^{\prime \prime}\left(u_{h}+s e_{u} ; e_{u}, e_{u}, e_{z}\right)\right) s(s-1) \mathrm{d} s .
\end{aligned}
$$

The forms $\rho(\cdot ; \cdot)$ and $\rho^{*}(\cdot ; \cdot, \cdot)$ are the residuals of (2) and (5), respectively. The remainder $\mathscr{R}^{(3)}$ is cubic in the error. The following proposition shows that the residuals are equal up to a quadratic remainder.

Proposition 3. With the notation from above, we have

$$
\rho^{*}\left(u_{h} ; z_{h}, u-\psi_{h}\right)=\rho\left(u_{h} ; z-\varphi_{h}\right)+\delta \rho \quad \forall \varphi_{h}, \psi_{h} \in V_{h},
$$

with

$$
\delta \rho=\int_{0}^{1}\left(A^{\prime \prime}\left(u_{h}+s e_{u} ; z_{h}+s e_{z}, e_{u}, e_{u}\right)-J^{\prime \prime}\left(u_{h}+s e_{u} ; e_{u}, e_{u}\right)\right) \mathrm{d} s
$$

Moreover, we have the simplified error representation

$$
J(u)-J\left(u_{h}\right)=\rho\left(u_{h} ; z-\varphi_{h}\right)+\mathscr{R}^{(2)} \quad \forall \varphi_{h} \in V_{h},
$$

with quadratic remainder

$$
\mathscr{R}^{(2)}=\int_{0}^{1}\left(A^{\prime \prime}\left(u_{h}+s e_{u} ; z, e_{u}, e_{u}\right)-J^{\prime \prime}\left(u_{h}+s e_{u} ; e_{u}, e_{u}\right)\right) \mathrm{d} s
$$

3 Galerkin discretization and dual problem

In this section, we apply the dual weighted residuals methodology to the Cahn-Hilliard equation (1). We denote $I=[0, T], Q=\Omega \times I$, and

$$
\langle v, w\rangle_{\mathscr{D}}=\int_{\mathscr{D}} v w \mathrm{~d} z, \quad\|v\|_{\mathscr{D}}^{2}=\int_{\mathscr{D}} v^{2} \mathrm{~d} z
$$

for subsets \mathscr{D} of Q or Ω with the relevant Lebesgue measure dz. Let $V=H^{1}(\Omega)$ and $\mathscr{W}=C^{1}([0, T], V)$. By multiplying the first equation by $\psi_{u} \in V$ and the second equation by $\psi_{w} \in V$, integrating over Ω and using Green's formula, we obtain the weak formulation: Find $u, w \in \mathscr{W}$ such that $u(0)=g_{0}$ and

$$
\begin{align*}
\left\langle u_{t}, \psi_{u}\right\rangle_{\Omega}+\left\langle\nabla w, \nabla \psi_{u}\right\rangle_{\Omega}=0 & \forall \psi_{u} \in V, t \in[0, T], \\
\left\langle w, \psi_{w}\right\rangle_{\Omega}-\varepsilon\left\langle\nabla u, \nabla \psi_{w}\right\rangle_{\Omega}-\left\langle f(u), \psi_{w}\right\rangle_{\Omega}=0 & \forall \psi_{w} \in V, t \in[0, T] . \tag{8}
\end{align*}
$$

Split the interval $I=[0, T]$ into subintervals $I_{n}=\left[t_{n-1}, t_{n}\right)$ of lengths $k_{n}=t_{n}-t_{n-1}$,

$$
0=t_{0}<t_{1}<\cdots<t_{n}<\cdots<t_{N}=T
$$

For each time level $t_{n}, n \geq 1$, let \mathscr{V}_{n} be the space of continuous piecewise linear functions with respect to regular spatial meshes $\mathbf{T}_{n}=\{K\}$, which may vary from time level to time level. By extending the spatial meshes \mathbf{T}_{n} as constant in time to the time slab $\Omega \times I_{n}$, we obtain meshes \mathscr{T}_{k} of the space-time domain $Q=\Omega \times I$, which consist of $(d+1)$-dimensional prisms $Q_{K}^{n}:=K \times \bar{I}_{n}$. Define the finite element space

$$
\mathscr{V}:=\left\{\varphi: \bar{Q} \rightarrow \mathbf{R}:\left.\varphi(\cdot, t)\right|_{\bar{\Omega}} \in \mathscr{V}_{n}, t \in I_{n},\left.\varphi(x, \cdot)\right|_{I_{n}} \in \Pi_{0}, x \in \bar{\Omega}\right\} .
$$

Here, Π_{0} denotes the polynomials of degree 0 . For functions from this space and their continuous analogues, we define

$$
v_{n}^{+}=\lim _{t \downarrow t_{n}} v(t), \quad v_{n}=v_{n}^{-}=\lim _{t \uparrow t_{n}} v(t), \quad[v]_{n}=v_{n}^{+}-v_{n}^{-} .
$$

For all $u, w, \psi_{u}, \psi_{w} \in \mathscr{V}$ or \mathscr{W}, consider the semilinear form

$$
\begin{aligned}
A\left(u, w ; \psi_{u}, \psi_{w}\right)= & \sum_{n=1}^{N} \int_{I_{n}}\left\{\left\langle u_{t}, \psi_{u}\right\rangle_{\Omega}+\left\langle\nabla w, \nabla \psi_{u}\right\rangle_{\Omega}+\left\langle w, \psi_{w}\right\rangle_{\Omega}-\varepsilon\left\langle\nabla u, \nabla \psi_{w}\right\rangle_{\Omega}\right. \\
& \left.-\left\langle f(u), \psi_{w}\right\rangle_{\Omega}\right\} \mathrm{d} t+\sum_{n=2}^{N}\left\langle[u]_{n-1}, \psi_{u, n-1}^{+}\right\rangle_{\Omega}+\left\langle u_{0}^{+}-g_{0}, \psi_{u, 0}^{+}\right\rangle_{\Omega} .
\end{aligned}
$$

Solutions $u, w \in \mathscr{W}$ of (1) satisfy the variational problem

$$
\begin{equation*}
A\left(u, w ; \psi_{u}, \psi_{w}\right)=0 \quad \forall \psi_{u}, \psi_{w} \in \mathscr{W} \tag{9}
\end{equation*}
$$

and the finite element problem can formulated: Find $U, W \in \mathscr{V}$ such that

$$
\begin{equation*}
A\left(U, W ; \psi_{u}, \psi_{w}\right)=0 \quad \forall \psi_{u}, \psi_{w} \in \mathscr{V} \tag{10}
\end{equation*}
$$

We now show that this is a standard time-stepping method. Since

$$
U(t)=U_{n}=U_{n}^{-}=U_{n-1}^{+}, W(t)=W_{n},
$$

for $t \in I_{n}$, we have

$$
\begin{align*}
A\left(U, W ; \psi_{u}, \psi_{w}\right)= & \sum_{n=1}^{N} \int_{I_{n}}\left\{\left\langle\nabla W_{n}, \nabla \psi_{u}\right\rangle_{\Omega}+\left\langle W_{n}, \psi_{w}\right\rangle_{\Omega}-\varepsilon\left\langle\nabla U_{n}, \nabla \psi_{w}\right\rangle_{\Omega}-\left\langle f\left(U_{n}\right), \psi_{w}\right\rangle_{\Omega}\right\} \mathrm{d} t \tag{11}\\
& +\sum_{n=2}^{N}\left\langle U_{n}-U_{n-1}, \psi_{u, n-1}^{+}\right\rangle_{\Omega}+\left\langle U_{1}-g_{0}, \psi_{u, 0}^{+}\right\rangle_{\Omega} .
\end{align*}
$$

By taking

$$
\psi_{u}(t)=\left\{\begin{array}{ll}
\chi_{u} \in \mathscr{V}_{n}, & t \in I_{n}, \\
0, & \text { otherwise },
\end{array} \quad \psi_{w}(t)= \begin{cases}\chi_{w} \in \mathscr{V}_{n}, & t \in I_{n}, \\
0, & \text { otherwise },\end{cases}\right.
$$

we see that (10) amounts to the implicit Euler time-stepping,

$$
\begin{aligned}
\left\langle U_{0}-g_{0}, \chi_{u}\right\rangle_{\Omega}=0 & \forall \chi_{u} \in \mathscr{V}_{1}, \\
k_{n}\left\langle\nabla W_{n}, \nabla \chi_{u}\right\rangle_{\Omega}+\left\langle U_{n}-U_{n-1}, \chi_{u}\right\rangle_{\Omega}=0 & \forall \chi_{u} \in \mathscr{V}_{n}, n \geq 1, \\
\left\langle W_{n}, \chi_{w}\right\rangle_{\Omega}-\varepsilon\left\langle\nabla U_{n}, \nabla \chi_{w}\right\rangle_{\Omega}-\left\langle f\left(U_{n}\right), \chi_{w}\right\rangle_{\Omega}=0 & \forall \chi_{w} \in \mathscr{V}_{n}, n \geq 1 .
\end{aligned}
$$

Now take a goal functional $J(u)$, which depends only on u, and set

$$
\mathscr{L}(v ; z)=J(u)-A(v ; z),
$$

where $v=(u, w), z=\left(z_{u}, z_{w}\right)$. With $\varphi=\left(\varphi_{u}, \varphi_{w}\right), \psi=\left(\psi_{u}, \psi_{w}\right)$, the stationary points are given by

$$
\mathscr{L}^{\prime}(v ; z, \varphi, \psi)=J^{\prime}\left(u ; \varphi_{u}\right)-A^{\prime}(v ; z, \varphi)-A(v ; \psi)=0 \quad \forall \varphi, \psi \in \mathscr{W} \times \mathscr{W}
$$

With $\psi=0$ we obtain $A^{\prime}(v ; z, \varphi)=J^{\prime}\left(u ; \varphi_{u}\right)$, the adjoint problem. So we should compute $A^{\prime}\left(u, w ; z_{u}, z_{w}\right.$, $\left.\varphi_{u}, \varphi_{w}\right)$ and $J^{\prime}\left(u ; \varphi_{u}\right)$. To this end we write

$$
\begin{aligned}
A\left(u, w ; \psi_{u}, \psi_{w}\right)= & \left\langle u_{t}, \psi_{u}\right\rangle_{Q}+\left\langle\nabla w, \nabla \psi_{u}\right\rangle_{Q}+\left\langle w, \psi_{w}\right\rangle_{Q}-\varepsilon\left\langle\nabla u, \nabla \psi_{w}\right\rangle_{Q} \\
& -\left\langle f(u), \psi_{w}\right\rangle_{Q}+\left\langle u(0)-g_{0}, \psi_{u}(0)\right\rangle_{\Omega} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
A^{\prime}\left(u, w ; z_{u}, z_{w}, \varphi_{u}, \varphi_{w}\right)= & \left\langle\varphi_{u, t}, z_{u}\right\rangle_{Q}+\left\langle\nabla \varphi_{w}, \nabla z_{u}\right\rangle_{Q}+\left\langle\varphi_{w}, z_{w}\right\rangle_{Q} \\
& -\varepsilon\left\langle\nabla \varphi_{u}, \nabla z_{w}\right\rangle_{Q}-\left\langle\varphi_{u}, z_{w}\right\rangle_{Q}+\left\langle\varphi_{u}(0), z_{u}(0)\right\rangle_{\Omega} .
\end{aligned}
$$

By integration by parts in t,

$$
\left\langle\varphi_{u, t}, z_{u}\right\rangle_{Q}=-\left\langle\varphi_{u}, z_{u, t}\right\rangle_{Q}+\left\langle\varphi_{u}(T), z_{u}(T)\right\rangle_{\Omega}-\left\langle\varphi_{u}(0), z_{u}(0)\right\rangle_{\Omega},
$$

we obtain

$$
\begin{aligned}
A^{\prime}\left(u, w ; z_{u}, z_{w}, \varphi_{u}, \varphi_{w}\right)= & -\left\langle\varphi_{u}, z_{u, t}\right\rangle_{Q}+\left\langle\nabla \varphi_{w}, \nabla z_{u}\right\rangle_{Q}+\left\langle\varphi_{w}, z_{w}\right\rangle_{Q} \\
& +\varepsilon\left\langle\nabla \varphi_{u}, \nabla z_{w}\right\rangle_{Q}-\left\langle\varphi_{u}, f^{\prime}(u) z_{w}\right\rangle_{Q}+\left\langle\varphi_{u}(T), z_{u}(T)\right\rangle_{\Omega}
\end{aligned}
$$

The adjoint problem is thus to find $z_{u}, z_{w} \in \mathscr{W}$ such that

$$
\begin{array}{r}
\left\langle\varphi_{u},-z_{u, t}\right\rangle_{Q}-\varepsilon\left\langle\nabla \varphi_{u}, \nabla z_{w}\right\rangle_{Q}-\left\langle\varphi_{u}, f^{\prime}(u) z_{w}\right\rangle_{Q}+\left\langle\varphi_{u}(T), z_{u}(T)\right\rangle_{\Omega} \\
+\left\langle\nabla \varphi_{w}, \nabla z_{w}\right\rangle_{Q}+\left\langle\varphi_{w}, z_{w}\right\rangle_{Q}=J^{\prime}\left(u ; \varphi_{u}\right) \quad \forall \varphi_{u}, \varphi_{w} \in \mathscr{W} . \tag{12}
\end{array}
$$

We now specialize to the case of a linear goal functional of the form

$$
J(u)=\langle u, g\rangle_{Q}+\left\langle u(T), g_{T}\right\rangle_{\Omega}
$$

for some $g \in L_{2}(Q)$ and $g_{T} \in L_{2}(\Omega)$. Then

$$
\begin{equation*}
J^{\prime}\left(u ; \varphi_{u}\right)=\left\langle\varphi_{u}, g\right\rangle_{Q}+\left\langle\varphi_{u}(T), g_{T}\right\rangle_{\Omega} . \tag{13}
\end{equation*}
$$

The adjoint problem then becomes: Find $z_{u}, z_{w} \in \mathscr{W}$ such that

$$
\begin{align*}
\left\langle\varphi_{u},-z_{u, t}-f^{\prime}(u) z_{w}-g\right\rangle_{Q}-\varepsilon\left\langle\nabla \varphi_{u}, \nabla z_{w}\right\rangle_{Q}+\left\langle\varphi_{u}(T), z_{u}(T)-g_{T}\right\rangle_{\Omega}=0 & \forall \varphi_{u} \in \mathscr{W} \tag{14}\\
\left\langle\varphi_{w}, z_{w}\right\rangle_{Q}+\left\langle\nabla \varphi_{w}, \nabla z_{u}\right\rangle_{Q}=0 & \forall \varphi_{w} \in \mathscr{W} .
\end{align*}
$$

The strong form of this is

$$
\begin{align*}
-\partial_{t} z_{u}+\varepsilon \Delta z_{w}-f^{\prime}(u) z_{w} & =g & & \text { in } Q \\
z_{w}-\Delta z_{u} & =0 & & \text { in } Q \\
\frac{\partial z_{u}}{\partial v}=0, \frac{\partial z_{w}}{\partial v} & =0 & & \text { on } \partial \Omega \times I, \tag{15}\\
z_{u}(T) & =g_{T} & & \text { in } \Omega .
\end{align*}
$$

4 A posteriori error estimates

From Proposition 3 we have the error representation

$$
\begin{equation*}
J(u)-J(U)=-A\left(U, W ; z_{u}-\pi z_{u}, z_{w}-\pi z_{w}\right)+\mathscr{R}^{(2)}, \tag{16}
\end{equation*}
$$

where $z=\left(z_{u}, z_{w}\right)$ is the solution of the adjoint problem (12) and $\pi z_{u}, \pi z_{w} \in \mathscr{V}$ are appropriate approximations to be defined below. The remainder is quadratic in the error.

In order to write this as a sum of local contributions we must rewrite $A\left(U, W ; \psi_{u}, \psi_{w}\right)$ in (11). First we compute $\int_{I_{n}}\left\langle\nabla W, \nabla \psi_{u}\right\rangle_{\Omega} \mathrm{d} t$. By using Green's formula elementwise, we have

$$
\int_{I_{n}}\left\langle\nabla W, \nabla \psi_{u}\right\rangle_{\Omega} \mathrm{d} t=\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}\left\langle\nabla W, \nabla \psi_{u}\right\rangle_{K} \mathrm{~d} t=\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}-\left\langle\Delta W, \psi_{u}\right\rangle_{K} \mathrm{~d} t+\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}\left\langle\partial_{\nu} W, \psi_{u}\right\rangle_{\partial K} \mathrm{~d} t,
$$

where $\partial_{v} W=v \cdot \nabla W$. We divide the boundary $\partial K \in \mathbf{T}_{n}$ into two parts: internal edges, denoted by \mathscr{E}_{I}^{n}, and edges on the boundary $\partial \Omega$, denoted by $\mathscr{E}_{\partial \Omega}^{n}$. So we get, with [] denoting the jump across the edge,

$$
\begin{gathered}
\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}\left\langle\partial_{\nu} W, \psi_{u}\right\rangle_{\partial K} \mathrm{~d} t=\int_{I_{n}} \sum_{E \in \mathscr{E}_{I}^{n}}\left\langle\partial_{\nu} W, \psi_{u}\right\rangle_{E} \mathrm{~d} t+\int_{I_{n}} \sum_{E \in \mathscr{E}_{\partial \Omega}^{n}}\left\langle\partial_{v} W, \psi_{u}\right\rangle_{E} \mathrm{~d} t \\
=\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}-\frac{1}{2}\left\langle\left[\partial_{\nu} W\right], \psi_{u}\right\rangle_{\partial K \backslash \partial \Omega} \mathrm{~d} t+\int_{I_{n}} \sum_{K \in \mathbf{T}_{n}}\left\langle\partial_{v} W, \psi_{u}\right\rangle_{\partial K \cap \partial \Omega} \mathrm{~d} t .
\end{gathered}
$$

Let ∂_{x} denote the spatial boundary and define $\partial_{x} Q=\partial \Omega \times I$ and $\partial_{x} Q_{K}^{n}=\partial K \times I_{n}$. Hence,

$$
\int_{I_{n}}\left\langle\nabla W, \nabla \psi_{u}\right\rangle_{\Omega} \mathrm{d} t=\sum_{K \in \mathbf{T}_{n}}\left\{-\left\langle\Delta W, \psi_{u}\right\rangle_{Q_{K}^{n}}-\frac{1}{2}\left\langle\left[\partial_{v} W\right], \psi_{u}\right\rangle_{\partial_{x} Q_{K}^{n}} \partial_{x} Q+\left\langle\partial_{v} W, \psi_{u}\right\rangle_{\partial_{x} Q_{K}^{n} \cap \partial_{x} Q}\right\},
$$

and in the same way

$$
\varepsilon \int_{I_{n}}\left\langle\nabla U, \nabla \psi_{w}\right\rangle_{\Omega} \mathrm{d} t=\sum_{K \in \mathbf{T}_{n}}\left\{-\varepsilon\left\langle\Delta U, \psi_{w}\right\rangle_{Q_{K}^{n}}-\frac{1}{2} \varepsilon\left\langle\left[\partial_{v} U\right], \psi_{w}\right\rangle_{\partial_{x} Q_{K}^{n} \backslash \partial_{x} Q}+\varepsilon\left\langle\partial_{v} U, \psi_{w}\right\rangle_{\partial_{x} Q_{K}^{n} \cap \partial_{x} Q}\right\} .
$$

Note that $\Delta W=\Delta U=0$ on Q_{K}^{n} for piecewise linear functions, but we find it instructive to keep these terms. Inserting this into (11) and noting that

$$
\int_{I_{n}}\left\langle W, \psi_{w}\right\rangle_{\Omega} \mathrm{d} t=\sum_{K \in \mathbf{T}_{n}}\left\langle W, \psi_{w}\right\rangle_{Q_{K}^{n}},
$$

and

$$
\int_{I_{n}}\left\langle f(U), \psi_{w}\right\rangle_{\Omega} \mathrm{d} t=\sum_{K \in \mathbf{T}_{n}}\left\langle f(U), \psi_{w}\right\rangle_{Q_{K}^{n}},
$$

gives

$$
\left.\left.\begin{array}{rl}
A\left(U, W ; \psi_{u}, \psi_{w}\right)= & \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{-\left\langle\Delta W, \psi_{u}\right\rangle_{Q_{K}^{n}}+\left\langle\varepsilon \Delta U+W-f(U), \psi_{w}\right\rangle_{Q_{K}^{n}}\right. \\
& -\frac{1}{2}\left\langle\left[\partial_{v} W\right], \psi_{u}\right\rangle_{\partial_{x} Q_{K}^{n}} \backslash \partial_{x} Q+\frac{1}{2} \varepsilon\left\langle\left[\partial_{v} U\right], \psi_{w}\right\rangle_{\partial_{x} Q_{K}^{n} \backslash \partial_{x} Q} \\
& +\left\langle\partial_{v} W, \psi_{u}\right\rangle_{\partial_{x} Q_{K}^{n} \cap \partial_{x} Q}-\varepsilon\left\langle\partial_{v} U, \psi_{w}\right\rangle \partial_{x} Q_{K}^{n} \cap \partial_{x} Q
\end{array}\right)\left\langle[U]_{n-1}, \psi_{u, n-1}^{+}\right\rangle_{K}\right\}, ~ \$,
$$

where we have set $U_{0}^{-}=g_{0}$ for simplicity. Hence (16) becomes

$$
\begin{align*}
J(u)-J(U)= & \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\left\langle R_{u}, z_{u}-\pi z_{u}\right\rangle_{Q_{K}^{n}}+\left\langle R_{w}, z_{w}-\pi z_{w}\right\rangle Q_{K}^{n}\right. \\
& +\left\langle r_{u}, z_{u}-\pi z_{u}\right\rangle_{\partial_{x} Q_{K}^{n}}+\left\langle r_{w}, z_{w}-\pi z_{w}\right\rangle \partial_{\partial_{x} Q_{K}^{n}} \tag{17}\\
& \left.-\left\langle[U]_{n-1},\left(z_{u}-\pi z_{u}\right)_{n-1}^{+}\right\rangle_{K}\right\}+\mathscr{R}^{(2)},
\end{align*}
$$

with the interior residuals

$$
R_{u}=\Delta W, \quad R_{w}=-\varepsilon \Delta U-W+f(U),
$$

the edge residuals

$$
\begin{aligned}
&\left.r_{w}\right|_{\Gamma}= \begin{cases}-\frac{1}{2} \varepsilon\left[\partial_{v} U\right], & \Gamma \subset \partial_{x} Q_{K}^{n} \backslash \partial_{x} Q, \\
0, & \text { otherwise },\end{cases} \\
&\left.r_{u}\right|_{\Gamma}= \begin{cases}\frac{1}{2}\left[\partial_{\nu} W\right], & \Gamma \subset \partial_{x} Q_{K}^{n} \backslash \partial_{x} Q \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

and the boundary residuals

$$
\begin{aligned}
& \left.r_{w}\right|_{\Gamma}= \begin{cases}\varepsilon \partial_{v} U, & \Gamma \subset \partial_{x} Q_{K}^{n} \cap \partial_{x} Q \\
0, & \text { otherwise }\end{cases} \\
& \left.r_{u}\right|_{\Gamma}= \begin{cases}-\partial_{v} W, & \Gamma \subset \partial_{x} Q_{K}^{n} \cap \partial_{x} Q \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Here the subscript u refers to residuals from the first equation in (8) and the subscript w to residuals from the second equation.

We now define $\pi z_{u}, \pi z_{w} \in \mathscr{V}$. Let

$$
\left(P_{n} v\right)(t)=\frac{1}{k_{n}} \int_{I_{n}} v(s) \mathrm{d} s
$$

be the orthogonal projector onto constants. Let $\pi_{n}: C(\bar{\Omega}) \rightarrow \mathscr{V}_{n}$ be the nodal interpolator; that is, it is defined by

$$
\left(\pi_{n} v\right)(a)=v(a),
$$

for all nodal points a in \mathbf{T}_{n}. Then we define $\pi: C(\bar{Q}) \rightarrow \mathscr{V}$ by $\left.\pi v\right|_{I_{n}}=P_{n} \pi_{n} v$. Since R_{u}, R_{w}, r_{u}, and r_{w} are piecewise constant in t, we have

$$
\begin{align*}
J(u)-J(U)=\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\{ & \left\langle R_{u}, P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\rangle_{Q_{K}^{n}}+\left\langle R_{w}, P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\rangle_{Q_{K}^{n}} \\
& +\left\langle r_{u}, P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\rangle_{\partial_{x} Q_{K}^{n}}+\left\langle r_{w}, P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\rangle_{\partial_{x} Q_{K}^{n}} \tag{18}\\
& \left.-\left\langle[U]_{n-1},\left(z_{u}-\pi z_{u}\right)_{n-1}^{+}\right\rangle_{K}\right\}+\mathscr{R}^{(2)} .
\end{align*}
$$

Applying the Cauchy-Schwartz inequality to each term gives

$$
\begin{aligned}
|J(u)-J(U)| \leq & \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\left\|R_{u}\right\|_{Q_{K}^{n}}\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{Q_{K}^{n}}+h_{K}^{-\frac{1}{2}}\left\|r_{u}\right\|_{\partial_{x} Q_{K}^{n}} h_{K}^{\frac{1}{2}}\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{\partial_{x} Q_{K}^{n}}\right. \\
& +\left\|R_{w}\right\|_{Q_{K}^{n}}\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{Q_{K}^{n}}+h_{K}^{-\frac{1}{2}}\left\|r_{w}\right\|_{\partial_{x} Q_{K}^{n}} h_{K}^{\frac{1}{2}}\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{\partial_{x} Q_{K}^{n}} \\
& \left.+k_{n}^{-\frac{1}{2}}\left\|[U]_{n-1}\right\|_{K} k_{n}^{\frac{1}{2}}\left\|\left(z_{u}-\pi z_{u}\right)_{n-1}^{+}\right\|_{K}\right\}+\left|\mathscr{R}^{(2)}\right| .
\end{aligned}
$$

Here $h_{K}=\operatorname{diam}(K)$. For $a, b, c, d \geq 0$ we have

$$
(a b+c d) \leq\left(a^{2}+c^{2}\right)^{\frac{1}{2}}\left(b^{2}+d^{2}\right)^{\frac{1}{2}}
$$

We use this inequality for each term in the previous inequality and set

$$
\begin{aligned}
\rho_{u, K} & =\left(\left\|R_{u}\right\|_{Q_{K}^{n}}^{2}+h_{K}^{-1}\left\|r_{u}\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
\omega_{u, K} & =\left(\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{Q_{K}^{n}}^{2}+h_{K}\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
\rho_{w, K} & =\left(\left\|R_{w}\right\|_{Q_{K}^{n}}^{2}+h_{K}^{-1}\left\|r_{w}\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
\omega_{w, K} & =\left(\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{Q_{K}^{n}}^{2}+h_{K}\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
\rho_{K} & =\left(k_{n}^{-1}\left\|[U]^{n-1}\right\|_{K}^{2}\right)^{\frac{1}{2}} \\
\omega_{K} & =\left(k_{n}\left\|\left(z_{u}-\pi z_{u}\right)_{n-1}^{+}\right\|_{K}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Note that, since $R_{u}=\Delta W=0$ for piecewise linear functions, the first term in $\rho_{u, K}$ and $\omega_{u, K}$ can actually be removed. So we have

$$
|J(u)-J(U)| \leq \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\rho_{u, K} \omega_{u, K}+\rho_{w, K} \omega_{w, K}+\rho_{K} \omega_{K}\right\}+\left|\mathscr{R}^{(2)}\right|
$$

We have proved the following theorem:
Theorem 1. We have the a posteriori error estimate

$$
\begin{equation*}
|J(u)-J(U)| \leq \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\rho_{u, K} \omega_{u, K}+\rho_{w, K} \omega_{w, K}+\rho_{K} \omega_{K}\right\}+\left|\mathscr{R}^{(2)}\right| \tag{19}
\end{equation*}
$$

Note that on each space-time cell Q_{K}^{n}, the terms $\rho_{u, K} \omega_{u, K}$ and $\rho_{w, K} \omega_{w, K}$ can be used to control the spatial mesh and the term $\rho_{K} \omega_{K}$ to control the time step k_{n} in an adaptive algoritheorem ; see [2]. We do not pursue this here.

In the following we want to obtain a weight free a posteriori error estimate where the weights in (19) are replaced by a global stability constant. We need the following interpolation error estimate, see [2, lemma 9.4].

Lemma 1. With π and π_{n} as defined as before, there holds

$$
\begin{align*}
& \left\|P_{n}\left(z-\pi_{n} z\right)\right\|_{Q_{K}^{n}}+h_{K}^{\frac{1}{2}}\left\|P_{n}\left(z-\pi_{n} z\right)\right\|_{\partial_{x} Q_{K}^{n}} \leq C h_{K}^{2}\left\|\mathrm{D}^{2} z\right\|_{K}^{n}, \tag{20}\\
& \left\|z\left(t_{n-1}\right)-P_{n} z\right\|_{K} \leq C k_{n}^{\frac{1}{2}}\left\|\partial_{t} z\right\|_{Q_{K}^{n}} . \tag{21}
\end{align*}
$$

Here $\left\|\mathrm{D}^{2} z\right\|_{Q_{K}^{n}}$ denotes the seminorm $\left(\sum_{|\alpha|=2}\left\|D^{\alpha} z\right\|_{Q_{K}^{n}}^{2}\right)^{\frac{1}{2}}$.
In the following we assume that $J(\cdot)$ is a linear functional given by (13) and Ω is such that we have the elliptic regularity estimate

$$
\begin{equation*}
\left\|\mathrm{D}^{2} v\right\|_{\Omega} \leq C\|\Delta v\|_{\Omega} \quad \forall v \in H^{2}(\Omega) \text { with }\left.\frac{\partial v}{\partial v}\right|_{\Gamma}=0 \tag{22}
\end{equation*}
$$

We also assume a global bound for $f^{\prime}(u)$, which is reasonable since it is known that $\|u\|_{L_{\infty}(Q)} \leq C$ (c.f. [5]).
In particular, with

$$
g=\frac{u-U}{\|u-U\|_{Q}} \text { and } g_{T}=\frac{\left(u_{N}-U_{N}\right)}{\left\|u_{N}-U_{N}\right\|_{\Omega}}
$$

the following theorem provides bounds for the norms of the error, $\|u-U\|_{Q}$ and $\left\|u_{N}-U_{N}\right\|_{\Omega}$.
Theorem 2. Assume that $\left\|f^{\prime}(u)\right\|_{L_{\infty}} \leq \beta$ and that (22) holds. Let z_{u}, z_{w} be the solutions of (15). Then there is $C=C(\beta)$ such that the following a posteriori error estimates hold.
(i) Let $g \in L_{2}(Q)$ with $\|g\|_{Q}=1$ and $g_{T}=0$. Then

$$
\begin{equation*}
\left|\langle u-U, g\rangle_{Q}\right| \leq C C_{S} \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{h_{K}^{4}\left(\rho_{u, K}^{2}+\rho_{w, K}^{2}\right)+\left(h_{K}^{4}+k_{n}^{2}\right) \rho_{K}^{2}\right\}^{\frac{1}{2}}+\left|\mathscr{R}^{(2)}\right|, \tag{23}
\end{equation*}
$$

where

$$
C_{S}=\sup _{g \in L_{2}(Q)} \frac{\left(\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}^{2}+\left\|\partial_{t} z_{u}\right\|_{Q}^{2}+\left\|\mathrm{D}^{2} z_{w}\right\|_{Q}^{2}\right)^{\frac{1}{2}}}{\|g\|_{Q}}
$$

(ii) Let $g_{T} \in L_{2}(\Omega)$ with $\left\|g_{T}\right\|_{\Omega}=1$ and $g=0$. Then

$$
\begin{equation*}
\left|\left\langle u-U, g_{T}\right\rangle_{\Omega}\right| \leq C C_{S} \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{h_{K}^{4}\left(\rho_{u, K}^{2}+\sigma_{n}^{-1} \rho_{w, K}^{2}+\sigma_{n}^{-1} \rho_{K}^{2}\right)+k_{n}^{2} \sigma^{-1} \rho_{K}^{2}\right\}^{\frac{1}{2}}+\left|\mathscr{R}^{(2)}\right| \tag{24}
\end{equation*}
$$

where $\sigma(t)=T-t$,

$$
\sigma_{n}= \begin{cases}\sigma\left(t_{n}\right)=T-t_{n}, & n=1, \ldots, N-1 \\ k_{N}, & n=N\end{cases}
$$

and

$$
C_{S}=\sup _{g_{T} \in L_{2}(\Omega)}\left(\varepsilon^{-1} \max _{I}\left\|z_{u}\right\|_{\Omega}^{2}+\varepsilon^{-1}\left\|z_{w}\right\|_{Q}^{2}+\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}^{2}+\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q}^{2}+\varepsilon^{2}\left\|\sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q}^{2}\right)^{\frac{1}{2}} /\left\|g_{T}\right\|_{\Omega} .
$$

Proof. Part (i). From Theorem 1 we have

$$
\begin{aligned}
& \omega_{u, K}=\left(\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{Q_{K}^{n}}^{2}+h_{K}\left\|P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \leq C h_{K}^{2}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{n}}, \\
& \omega_{w, K}=\left(\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{Q_{K}^{n}}^{2}+h_{K}\left\|P_{n}\left(z_{w}-\pi_{n} z_{w}\right)\right\|_{\partial_{x} Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \leq C h_{K}^{2}\left\|\mathrm{D}^{2} z_{w}\right\|_{K}^{n},
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{K} & =k_{n}^{\frac{1}{2}}\left\|\left(z_{u}-\pi_{n} z_{u}\right)_{n-1}^{+}\right\|\left\|_{K} \leq k_{n}^{\frac{1}{2}}\right\| P_{n}\left(z_{u}-\pi_{n} z_{u}\right)\left\|_{K}+k_{n}^{\frac{1}{2}}\right\| z_{u}\left(t_{n-1}\right)-P_{n} z_{u} \|_{K} \\
& \leq C h_{K}^{2}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{n}}+C k_{n}\left\|\partial_{t} z_{u}\right\|_{Q_{K}^{n}}+\left|\mathscr{R}^{(2)}\right| .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\langle u-U, g\rangle_{Q}\right| & \leq \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{\rho_{u, K} \omega_{u, K}+\rho_{w, K} \omega_{w, K}+\rho_{K} \omega_{K}\right\} \\
& \leq \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}}\left\{C h_{K}^{2} \rho_{u, K}\left\|\mathrm{D}^{2} z_{u}\right\| Q_{K}^{n}+C h_{K}^{2} \rho_{w, K}\left\|\mathrm{D}^{2} z_{w}\right\| Q_{K}^{n}+\rho_{K}\left(C h_{K}^{2}\left\|\mathrm{D}^{2} z_{u}\right\| Q_{K}^{n}+C k_{n}\left\|\partial_{t} z_{u}\right\| Q_{K}^{n}\right)\right\}
\end{aligned}
$$

and the desired estimate (23) follows by the Cauchy-Schwartz inequality

$$
\begin{aligned}
\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{2} \rho_{u, K}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{n}} & \leq\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{u, K}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{2} \rho_{u, K}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{u, K}^{2}\right)^{\frac{1}{2}}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q} \leq C_{S}\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{u, K}^{2}\right)^{\frac{1}{2}}\|g\| Q
\end{aligned}
$$

and similarly for the other terms.
Part (ii). The previous bound for $\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{u, K} \omega_{u, K}$ applies here also. Consider then

$$
\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} \omega_{w, K} \leq \sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} C h_{K}^{2}\left\|\mathrm{D}^{2} z_{w}\right\|_{Q_{K}^{n}}+\sum_{K \in \mathbf{T}_{N}} \rho_{w, K} \omega_{w, K} .
$$

Here,

$$
\begin{aligned}
\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} C h_{K}^{2}\left\|\mathrm{D}^{2} z_{w}\right\|_{Q_{K}^{n}} & =\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} C h_{K}^{2}\left\|\sigma^{-\frac{1}{2}} \sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q_{K}^{n}} \\
& \leq C \sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} \sigma_{n}^{-\frac{1}{2}} h_{K}^{2}\left\|\sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q_{K}^{n}} \\
& \leq C\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \sigma_{n}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}}\left\|\sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q_{K}^{n}}^{2}\right)^{\frac{1}{2}} \\
& \leq C\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \sigma_{n}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}}\left\|\sigma_{n}^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q} \\
& \leq C_{S} C\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \sigma_{n}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}}\left\|g_{T}\right\|_{\Omega} .
\end{aligned}
$$

The term with $n=N$ is special. We go back to (18) and replace it by

$$
\sum_{K \in \mathbf{T}_{N}}\left\langle R_{w}, z_{w}-\pi_{N} z_{w}\right\rangle_{Q_{K}^{N}}=\sum_{K \in \mathbf{T}_{N}}\left\langle R_{w},\left(I-\pi_{N}\right) \int_{I_{N}} z_{w} \mathrm{~d} t\right\rangle_{K} \leq \sum_{K \in \mathbf{T}_{N}}\left\|R_{w}\right\|_{K} C h_{K}^{2}\left\|\mathrm{D}^{2} \int_{I_{N}} z_{w} \mathrm{~d} t\right\|_{K} .
$$

Here, by the regularity estimate (22), $\varepsilon \Delta z_{w}=\partial_{t} z_{u}+f^{\prime}(u) z_{w}$ from the first equation in (15), and $\left\|f^{\prime}(u)\right\|_{L_{\infty}} \leq$ β, we have

$$
\begin{aligned}
\left\|\mathrm{D}^{2} \int_{I_{N}} z_{w} \mathrm{~d} t\right\|_{K} & \leq C\left\|\int_{I_{N}} \Delta z_{w} \mathrm{~d} t\right\|_{K}=C \varepsilon^{-1}\left\|\int_{I_{N}}\left(\partial_{t} z_{u}+f^{\prime}(u) z_{w}\right) \mathrm{d} t\right\|_{K} \\
& \leq C \varepsilon^{-1}\left(\left\|z_{u}\left(t_{N}\right)\right\|_{K}+\left\|z_{u}\left(t_{N-1}\right)\right\|_{K}+\beta k_{N}^{\frac{1}{2}}\left\|z_{w}\right\|_{Q_{K}^{N}}\right) .
\end{aligned}
$$

Hence, since $\rho_{w, K}=\left\|R_{w}\right\|_{Q_{K}^{N}}=k_{N}^{\frac{1}{2}}\left\|R_{w}\right\|_{K}$, we have

$$
\begin{aligned}
\sum_{K \in \mathbf{T}_{N}}\left\langle R_{w}, z_{w}-\pi_{N} z_{w}\right\rangle_{Q_{K}^{N}} & \leq \sum_{K \in \mathbf{T}_{N}}\left\|R_{w}\right\|_{K} C h_{K}^{2} \varepsilon^{-1}\left(\left\|z_{u}\left(t_{N}\right)\right\|_{K}+\left\|z_{u}\left(t_{N-1}\right)\right\|_{K}+k_{N}^{\frac{1}{2}}\left\|z_{w}\right\|_{Q_{K}^{N}}\right) \\
& =C \varepsilon^{-1} \sum_{K \in \mathbf{T}_{N}} k_{N}^{-\frac{1}{2}} h_{K}^{2} \rho_{w, K}\left(\left\|z_{u}\left(t_{N}\right)\right\|_{K}+\left\|z_{u}\left(t_{N-1}\right)\right\|_{K}+k_{N}^{\frac{1}{2}}\left\|z_{w}\right\|_{Q_{K}^{N}}\right) \\
& \leq C \varepsilon^{-1}\left(\sum_{K \in \mathbf{T}_{N}} k_{N}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}}\left(\left\|z_{u}\left(t_{N}\right)\right\|_{\Omega}+\left\|z_{u}\left(t_{N-1}\right)\right\|_{\Omega}+k_{N}^{\frac{1}{2}}\left\|z_{w}\right\|_{Q}\right) \\
& \leq C \varepsilon^{-1} C_{S}\left\|g_{T}\right\|_{\Omega}\left(\sum_{K \in \mathbf{T}_{N}} \sigma_{N}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}},
\end{aligned}
$$

where we have used $\sigma_{N}=k_{N}$. So we have

$$
\begin{equation*}
\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{w, K} \omega_{w, K} \leq C C_{S}\left\|g_{T}\right\|_{\Omega}\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \sigma_{n}^{-1} h_{K}^{4} \rho_{w, K}^{2}\right)^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

Now we compute $\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{K} \omega_{K}$. For $K \in \mathbf{T}_{N}$ we use

$$
\begin{aligned}
\omega_{K} & =k_{N}^{\frac{1}{2}}\left\|\left(z_{u}-\pi z_{u}\right)_{N-1}^{+}\right\|_{K} \leq k_{N}^{\frac{1}{2}}\left\|P_{N}\left(z_{u}-\pi_{N} z_{u}\right)\right\|_{K}+k_{N}^{\frac{1}{2}}\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{K} \\
& =\left\|P_{N}\left(z_{u}-\pi_{N} z_{u}\right)\right\|_{Q_{K}^{N}}+k_{N}^{\frac{1}{2}}\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{K} \leq C h_{K}^{2}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{N}}+k_{N}^{\frac{1}{2}}\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{K}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{K} \omega_{K}= & C \sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{K} h_{K}^{2}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q_{K}^{n}}+C \sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{K} k_{n} \sigma_{n}^{-\frac{1}{2}}\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q_{K}^{n}} \\
& +\sum_{K \in \mathbf{T}_{N}} \rho_{K} k_{N}^{\frac{1}{2}}\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{K} \\
\leq & C\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{K}^{2}\right)^{\frac{1}{2}}\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}+C\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{K}^{2} k_{n}^{2} \sigma_{n}^{-1}\right)^{\frac{1}{2}}\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q} \\
& +C\left(\sum_{K \in \mathbf{T}_{N}} k_{N} \rho_{K}^{2}\right)^{\frac{1}{2}}\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{\Omega}
\end{aligned}
$$

Using $\sigma_{N}=k_{N}$ and

$$
\left\|z_{u}\left(t_{N-1}\right)-P_{N} z_{u}\right\|_{\Omega} \leq 2 \max _{I}\left\|z_{u}\right\|_{\Omega} \leq 2 C_{S}\left\|g_{T}\right\|_{\Omega}
$$

gives

$$
\begin{aligned}
\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{K} \omega_{K} \leq & C\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{K}^{2}\right)^{\frac{1}{2}} C_{S}\left\|g_{T}\right\|_{\Omega}+C\left(\sum_{n=1}^{N-1} \sum_{K \in \mathbf{T}_{n}} \rho_{K}^{2} k_{n}^{2} \sigma_{n}^{-1}\right)^{\frac{1}{2}} C_{S}\left\|g_{T}\right\|_{\Omega} \\
& +C\left(\sum_{K \in \mathbf{T}_{N}} k_{N} \rho_{K}^{2}\right)^{\frac{1}{2}} C_{S}\left\|g_{T}\right\|_{\Omega} \\
= & C C_{S}\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} h_{K}^{4} \rho_{K}^{2}\right)^{\frac{1}{2}}\left\|g_{T}\right\|_{\Omega}+C C_{S}\left(\sum_{n=1}^{N} \sum_{K \in \mathbf{T}_{n}} \rho_{K}^{2} k_{n}^{2} \sigma_{n}^{-1}\right)^{\frac{1}{2}}\left\|g_{T}\right\|_{\Omega}
\end{aligned}
$$

This completes the proof.

Finally, we prove a priori bounds for the stability constants C_{S}.
Theorem 3. Assume that $\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)} \leq \beta$ and $\varepsilon \in(0,1]$ and that (22) holds. Then the solution of (15) admits the following a priori bounds, where $C=C(\beta)$. If $g_{T}=0$, then

$$
\begin{equation*}
\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}^{2}+\left\|\partial_{t} z_{u}\right\|_{Q}^{2}+\varepsilon^{2}\left\|\mathrm{D}^{2} z_{w}\right\|_{Q}^{2} \leq C\|g\|_{Q}^{2} \mathrm{e}^{C \varepsilon^{-1} T} \tag{26}
\end{equation*}
$$

If $g=0$, then, with $\sigma(t)=T-t$,

$$
\begin{equation*}
\varepsilon^{-1} \max _{I}\left\|z_{u}\right\|_{\Omega}^{2}+\left\|z_{w}\right\|_{Q}^{2}+\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}^{2}+\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q}^{2}+\varepsilon^{2}\left\|\sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q}^{2} \leq C \varepsilon^{-1}\left\|g_{T}\right\|_{\Omega}^{2} \mathrm{e}^{C \varepsilon^{-1} T} \tag{27}
\end{equation*}
$$

Proof. We first estimate $\left\|z_{w}\right\|_{Q}^{2}$. To this end we use $\Delta z_{u}=z_{w}$ from the second equation of (15) to get

$$
\left\langle\Delta z_{w}, z_{u}\right\rangle_{\Omega}=\left\langle z_{w}, \Delta z_{u}\right\rangle_{\Omega}=\left\|z_{w}\right\|_{\Omega}^{2}
$$

Then we multiply the first equation of (15) by z_{u}, and integrate over $[t, T]$,

$$
\int_{t}^{T}\left\langle-\partial_{t} z_{u}, z_{u}\right\rangle_{\Omega} \mathrm{d} s+\varepsilon \int_{t}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} s-\int_{t}^{T}\left\langle f^{\prime}(u) z_{w}, z_{u}\right\rangle_{\Omega} \mathrm{d} s=\int_{t}^{T}\left\langle g, z_{u}\right\rangle_{\Omega} \mathrm{d} s
$$

By assumption we know that $\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)} \leq \beta$, so we have

$$
\begin{aligned}
\frac{1}{2}\left\|z_{u}(t)\right\|_{\Omega}^{2}-\frac{1}{2}\left\|z_{u}(T)\right\|_{\Omega}^{2}+\varepsilon \int_{t}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} s & \leq \int_{t}^{T}\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)}\left\|z_{w}\right\|_{\Omega}\left\|z_{u}\right\|_{\Omega} \mathrm{d} s+\int_{t}^{T}\|g\|_{\Omega}\left\|z_{u}\right\|_{\Omega} \mathrm{d} s \\
& \leq \int_{t}^{T}\left(\frac{\beta^{2}}{2 \varepsilon}\left\|z_{u}\right\|_{\Omega}^{2}+\frac{\varepsilon}{2}\left\|z_{w}\right\|_{\Omega}^{2}\right) \mathrm{d} s+\int_{t}^{T}\left(\frac{c}{2}\|g\|_{\Omega}^{2}+\frac{1}{2 c}\left\|z_{u}\right\|_{\Omega}^{2}\right) \mathrm{d} s \\
& \leq \frac{\beta^{2}}{\varepsilon} \int_{t}^{T}\left\|z_{u}\right\|_{\Omega}^{2} \mathrm{~d} s+\frac{\varepsilon}{2} \int_{t}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} s+\int_{t}^{T}\left(\frac{c}{2}\|g\|_{\Omega}^{2}+\frac{1}{2 c}\left\|z_{u}\right\|_{\Omega}^{2}\right) \mathrm{d} s
\end{aligned}
$$

Hence, with $z_{u}(T)=g_{T}$ and $c=\frac{\varepsilon}{\beta^{2}}$,

$$
\begin{aligned}
\left\|z_{u}(t)\right\|_{\Omega}^{2}+\varepsilon \int_{t}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} s & \leq \frac{\varepsilon}{\beta^{2}}\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}+2 \beta^{2} \varepsilon^{-1} \int_{t}^{T}\left\|z_{u}\right\|_{\Omega}^{2} \mathrm{~d} s \\
& \leq \frac{C}{\varepsilon}\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}+C \varepsilon^{-1} \int_{t}^{T}\left\|z_{u}\right\|_{\Omega}^{2} \mathrm{~d} s .
\end{aligned}
$$

Define

$$
\Phi(t)=\left\|z_{u}(t)\right\|_{\Omega}^{2}+\varepsilon \int_{t}^{T}\left\|z_{w}(s)\right\|_{\Omega}^{2} \mathrm{~d} s
$$

Obviously we have $\left\|z_{u}(s)\right\|_{\Omega}^{2} \leq \Phi(s)$, so that

$$
\Phi(t) \leq C \varepsilon\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}+C \varepsilon^{-1} \int_{t}^{T} \Phi(s) \mathrm{d} s
$$

We apply Gronwall's lemma to get

$$
\Phi(t) \leq C\left(\varepsilon\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}\right) \mathrm{e}^{C \varepsilon^{-1}(T-t)}
$$

This means

$$
\left\|z_{u}(t)\right\|_{\Omega}^{2}+\varepsilon \int_{t}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} s \leq C\left(\varepsilon\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}\right) \mathrm{e}^{C \varepsilon^{-1}(T-t)}
$$

We conclude

$$
\begin{aligned}
\max _{I}\left\|z_{u}\right\|_{\Omega}^{2} & \leq C\left(\varepsilon\|g\|_{Q}^{2}+\left\|g_{T}\right\|_{\Omega}^{2}\right) \mathrm{e}^{C \varepsilon^{-1} T} \\
\left\|z_{w}\right\|_{Q}^{2} & \leq C\left(\|g\|_{Q}^{2}+\varepsilon^{-1}\left\|g_{T}\right\|_{\Omega}^{2}\right) \mathrm{e}^{C \varepsilon^{-1} T} .
\end{aligned}
$$

From the second equation we know $z_{w}=\Delta z_{u}$. So, by (22) and (28),

$$
\begin{equation*}
\left\|\mathrm{D}^{2} z_{u}\right\|_{Q}^{2} \leq C\left\|\Delta z_{u}\right\|_{Q}^{2}=C\left\|z_{w}\right\|_{Q}^{2} \leq C\left(\|g\|_{Q}^{2}+\varepsilon^{-1}\left\|g_{T}\right\|_{\Omega}^{2}\right) \mathrm{e}^{C \varepsilon^{-1} T} \tag{28}
\end{equation*}
$$

This takes care of the first terms in (26) and (27).
Now assume that $g_{T}=0$. Consider the dual problem (15) and multiply the first equation by $-\partial_{t} z_{u}$ and integrate over Q to get

$$
\begin{equation*}
\left\langle\partial_{t} z_{u}, \partial_{t} z_{u}\right\rangle_{Q}-\varepsilon\left\langle\Delta z_{w}, \partial_{t} z_{u}\right\rangle_{Q}-\left\langle f^{\prime}(u) z_{w}, \partial_{t} z_{u}\right\rangle_{Q}=-\left\langle g, \partial_{t} z_{u}\right\rangle_{Q} . \tag{29}
\end{equation*}
$$

So, by using $z_{w}=\Delta z_{u}$ from the second equation, we get

$$
\left\langle\Delta z_{w}, \partial_{t} z_{u}\right\rangle_{Q}=\left\langle z_{w}, \partial_{t} \Delta z_{u}\right\rangle_{Q}=\left\langle\Delta z_{u}, \partial_{t} \Delta z_{u}\right\rangle_{Q}=\frac{1}{2} \int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\Delta z_{u}\right\|_{\Omega}^{2} \mathrm{~d} t
$$

By putting this in (29) and using that $\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)} \leq \beta$, we have

$$
\begin{aligned}
\left\|\partial_{t} z_{u}\right\|_{Q}^{2}-\frac{\varepsilon}{2}\left\|\Delta z_{u}(T)\right\|_{\Omega}^{2}+\frac{\varepsilon}{2}\left\|\Delta z_{u}(0)\right\|_{\Omega}^{2} & \leq\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)}\left\|z_{w}\right\|_{Q}\left\|\partial_{t} z_{u}\right\|_{Q}+\|g\|_{Q}\left\|\partial_{t} z_{u}\right\|_{Q} \\
& \leq \frac{c \beta^{2}}{2}\left\|z_{w}\right\|_{Q}^{2}+\frac{1}{2 c}\left\|\partial_{t} z_{u}\right\|_{Q}^{2}+\frac{c}{2}\|g\|_{Q}^{2}+\frac{1}{2 c}\left\|\partial_{t} z_{u}\right\|_{Q}^{2}
\end{aligned}
$$

Put $c=2$ and kick back $\left\|\partial_{t} z_{u}\right\|_{Q}^{2}$ to get, with $z_{u}(T)=g_{T}=0$,

$$
\frac{1}{2}\left\|\partial_{t} z_{u}\right\|_{Q}^{2}+\frac{\varepsilon}{2}\left\|\Delta z_{u}(0)\right\|_{\Omega}^{2} \leq \beta^{2}\left\|z_{w}\right\|_{Q}^{2}+\|g\|_{Q}^{2} .
$$

Hence, by (28) with $C=C(\beta)$,

$$
\begin{equation*}
\left\|\partial_{t} z_{u}\right\|_{Q}^{2} \leq C\left\|z_{w}\right\|_{Q}^{2}+C\|g\|_{Q}^{2} \leq C\|g\|_{Q}^{2} \mathrm{e}^{-C \varepsilon^{-1} T} . \tag{30}
\end{equation*}
$$

It remains to bound $\left\|\mathrm{D}^{2} z_{w}\right\|_{Q}^{2}$. From the first equation of (15) we get

$$
\varepsilon \Delta z_{w}=g+\partial_{t} z_{u}+f^{\prime}(u) z_{w} .
$$

Taking norms and using (22), (28), and (30) gives

$$
\begin{aligned}
\varepsilon^{2}\left\|\mathrm{D}^{2} z_{w}\right\|_{Q}^{2} & \leq \varepsilon^{2} C\left\|\Delta z_{w}\right\|_{Q}^{2}=C\left\|g+\partial_{t} z_{u}+f^{\prime}(u) z_{w}\right\|_{Q}^{2} \\
& \leq C\left(\|g\|_{Q}^{2}+\left\|\partial_{t} z_{u}\right\|_{Q}^{2}+\left\|f^{\prime}(u)\right\|_{L_{\infty}(Q)}^{2}\left\|z_{w}\right\|_{Q}^{2}\right) \\
& \leq C\|g\|_{Q}^{2} \mathrm{e}^{C \varepsilon^{-1} T} .
\end{aligned}
$$

This completes the proof of (26)
Now let $g=0$ and set $\sigma(t)=T-t$. Multiply the first equation of (15) by $-\sigma \partial_{t} z_{u}$ to get

$$
\left\langle\partial_{t} z_{u}, \sigma \partial_{t} z_{u}\right\rangle_{Q}-\varepsilon\left\langle\Delta z_{w}, \sigma \partial_{t} z_{u}\right\rangle_{Q}-\left\langle f^{\prime}(u) z_{w}, \sigma \partial_{t} z_{u}\right\rangle_{Q}=0 .
$$

Here, since $z_{w}=\Delta z_{u}$ and $\sigma^{\prime}(t)=-1$,

$$
\begin{aligned}
\left\langle\Delta z_{w}, \sigma \partial_{t} z_{u}\right\rangle_{Q} & =\left\langle z_{w}, \sigma \Delta \partial_{t} z_{u}\right\rangle_{Q}=\left\langle\Delta z_{u}, \sigma \Delta \partial_{t} z_{u}\right\rangle_{Q}=\frac{1}{2} \int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\sigma\left\|\Delta z_{u}\right\|_{\Omega}^{2}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \sigma^{\prime}\left\|\Delta z_{u}\right\|_{\Omega}^{2} \mathrm{~d} t \\
& =\frac{1}{2} \sigma(T)\left\|\Delta z_{u}(T)\right\|_{\Omega}^{2}-\frac{1}{2} \sigma(0)\left\|\Delta z_{u}(0)\right\|_{\Omega}^{2}+\frac{1}{2} \int_{0}^{T}\left\|z_{w}\right\|_{\Omega}^{2} \mathrm{~d} t=-\frac{1}{2} T\left\|\Delta z_{u}(0)\right\|_{\Omega}^{2}+\frac{1}{2}\left\|z_{w}\right\|_{Q}^{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{w}\right\|_{Q}^{2}+\left\|\Delta z_{u}(0)\right\|_{\Omega}^{2} & \leq \frac{\varepsilon}{2}\left\|z_{w}\right\|_{Q}^{2}+\left\|f^{\prime}(u)\right\|_{L_{\infty}}\left\|\sigma^{\frac{1}{2}} z_{w}\right\|_{Q}\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q} \\
& \leq \frac{1}{2}\left(\varepsilon+\beta^{2} T\right)\left\|z_{w}\right\|_{Q}^{2}+\frac{1}{2}\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q}^{2} .
\end{aligned}
$$

So by (28) we have

$$
\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q} \leq\left(\varepsilon+\beta^{2} T\right)\left\|z_{w}\right\|_{Q}^{2} C \varepsilon^{-1}\left\|g_{T}\right\|_{\Omega}^{2} \mathrm{e}^{C \varepsilon^{-1} T} .
$$

Finally, from (22) and $\varepsilon \Delta z_{w}=\partial_{t} z_{u}+f^{\prime}(u) z_{w}$ we get

$$
\begin{aligned}
\varepsilon^{2}\left\|\sigma^{\frac{1}{2}} \mathrm{D}^{2} z_{w}\right\|_{Q}^{2} & \leq \varepsilon^{2} C\left\|\sigma^{\frac{1}{2}} \Delta z_{w}\right\|_{Q}^{2}=C\left\|\sigma^{\frac{1}{2}}\left(\partial_{t} z_{u}+f^{\prime}(u) z_{w}\right)\right\|_{Q}^{2} \\
& \leq C\left(\left\|\sigma^{\frac{1}{2}} \partial_{t} z_{u}\right\|_{Q}^{2}+T\left\|z_{w}\right\|_{Q}^{2}\right) \leq C \varepsilon^{-1}\left\|g_{T}\right\|_{\Omega}^{2} \mathrm{e}^{\varepsilon^{-1} T} .
\end{aligned}
$$

This completes the proof of (27).

References

[1] L. Baňas R. Nürnberg, Adaptive finite element methods for Cahn-Hilliard equations, J. Comput. Appl. Math. 218 (2008) 2-11.
[2] W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser, 2003.
[3] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258-267
[4] C.M. Elliott, S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comput. 58 (1992) 603-630, S33-S36.
[5] C.M. Elliott, S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986) 339-357
[6] X. Feng, H. Wu, A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow, J. Comput. Math. 26 (2008) 767-796.

[^0]: * Corresponding author.

 Received: 6 May 2022 / Revised: 24 June 2022 / Accepted: 24 June 2022
 DOI: 10.22124/JMM.2022.22244.1960

