- K. Akimoto, T. Hiraoka, K. Sadamasa, and M. Niepert Akimoto, Cross-Sentence N-ary Relation Extraction using Lower-Arity Universal Schemas, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), (2019), 6226-6232.
- B. Bai, L. Wang, Z. Han, W. Chen, and T. Svensson, Caching based socially-aware D2D communications in wireless content delivery networks: A hypergraph framework, IEEE Wireless Communications, (4) 23 (2016), 74-81.
- C. Berge, Hypergraphs North Holland Mathematical Library, Elsevier Science Publishers BV, 1989.
- J. Caceres, M. Ceballos, J. Nu~nez, M. L. Puertas, and A. F. Tenorio, Graph operations and Lie algebras, Int. J. Comput. Math, (10) 90 (2013), 2092-2104.
- A. Carriazo, A and L. M. Fernandez,and J. Nunez, Combinatorial structures associated with Lie algebras of nite dimension, Linear Algebra Appl., 389 (2014), 43-61.
- M. Ceballos, and J. Nu~nez, and A. F. Tenorio, Combinatorial structures and Lie algebras of upper triangular matrices, Appl. Math. Lett., (3) 25 (2012), 514-519.
- M. Ceballos,J. Nunez, and A. F. Tenorio, Triangular con gurations and Lie algebras of strictly upper-triangular matrices, Appl. Comput. Math., (1) 13 (2014), 62-70.
- M. Ceballos, J. Nunez, and A. F. Tenorio, Relations between combinatorial structures and Lie algebras: centers and derived Lie algebras, Bull. Malays.Math. Sci. Soc., (2) 38 (2015), 529-541.
- F. Esmaeili Khalil Saraei, The annihilator graph of modules over commutative rings, J. Algebra Relat. Topics, (1) 9 (2021), 93-108.
- L. M. Fernandez and L. Martn-Martnez, Lie algebras associated with triangular con gurations, Linear Algebra Appl., 407 (2005), 43-63.
- M. Karimi, A graph associated to spectrum of a commutative ring, J. Algebra Relat. Topics, (2) 2 (2014), 11-23.
- P.T. Lalchandani, Exact annihilating-ideal graph of commutative rings, J. Algebra Relat. Topics, (1) 5 (2017), 27-23.
- A. Malcev, On solvable Lie algebras, Russian Academy of Sciences, Steklov Mathematical Institute of Russian, (5) 9 (1945), 329-356.
- M. Primc, Basic representations for classical ane Lie algebras, J. Algebra, (1) 228 (2000), 1-50.
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Springer Science & Business Media, 102, 2013.
- S. Venkatraman, G. Rajaram, and K. Krithivasan, Unimodular hypergraph for DNA sequencing: A polynomial time algorithm, Proc. Nat. Acad. Sci. India Sect. A, (1) 90(2020), 49-56.
- S. Visweswaran and J. Parejiya, A Note on a graph associated to a commutative ring, J. Algebra Relat. Topics, (1) 5 (2017), 61-82.
- J. Yu, D. Tao, and M. Wang, Adaptive hypergraph learning and its application in image classi cation, IEEE Trans. Image Process., (7) 21 (2012), 3262-3272.
|