تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,247,167 |
تعداد دریافت فایل اصل مقاله | 6,900,498 |
An iterative variational model for blind image deconvolution | ||
Journal of Mathematical Modeling | ||
دوره 10، شماره 3، آذر 2022، صفحه 467-486 اصل مقاله (1.4 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2022.21262.1862 | ||
نویسندگان | ||
Bouchra Laaziri* ؛ Abdelilah Hakim؛ Said Raghay | ||
Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakesh, Morocco | ||
چکیده | ||
Classical image deconvolution seeks an estimate of the true image when the blur kernel or the point spread function (PSF) of the blurring system is known a priori. However, blind image deconvolution addresses the much more complicated, but realistic problem where the PSF is unknown. Bayesian inference approach with appropriate priors on the image and the blur has been used successfully to solve this blind problem, in particular with a Gaussian prior and a joint maximum a posteriori (JMAP) estimation. However, this technique is unstable and suffers from significant ringing artifacts in various applications. To overcome these limitations, we propose a regularized version using $H^1$ regularization terms on both the sharp image and the blur kernel. We present also useful techniques for estimating the smoothing parameters. We were able to derive an efficient algorithm that produces high quality deblurred results compared to some well-known methods in the literature. | ||
کلیدواژهها | ||
Blind image deconvolution؛ supervised Bayesian approach؛ regularization | ||
آمار تعداد مشاهده مقاله: 606 تعداد دریافت فایل اصل مقاله: 601 |