
An iterative variational model for blind image deconvolution

Bouchra Laaziri∗ , Abdelilah Hakim, Said Raghay

Department of Mathematics, University of Cadi Ayyad, Marrakesh, Morocco
Email(s): bouchra.laaziri@ced.uca.ac.ma, a.hakim@uca.ma, s.raghay@uca.ma

Journal of Mathematical Modeling
Vol. 10, No. 3, 2022, pp. 467-486. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. Classical image deconvolution seeks an estimate of the true image when the blur kernel
or the point spread function (PSF) of the blurring system is known a priori. However, blind image
deconvolution addresses the much more complicated, but realistic problem where the PSF is unknown.
Bayesian inference approach with appropriate priors on the image and the blur has been used successfully
to solve this blind problem, in particular with a Gaussian prior and a joint maximum a posteriori (JMAP)
estimation. However, this technique is unstable and suffers from significant ringing artifacts in various
applications. To overcome these limitations, we propose a regularized version using H1 regularization
terms on both the sharp image and the blur kernel. We present also useful techniques for estimating the
smoothing parameters. We were able to derive an efficient algorithm that produces high quality deblurred
results compared to some well-known methods in the literature.
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1 Introduction

Over the last few years, image deconvolution has attracted increasing attention, considering the major
function of image restoration in advanced imaging systems to provide high-quality images under com-
plex environments such as motion, inappropriate lighting settings, and inaccurate device components. It
is a classical inverse problem that aims to restore a sharp image from the degraded (blurry and/or noisy)
version. For several applications for image processing, this recovery process is important. Even though
classical linear image deconvolution has been studied extensively [1, 15, 19], the more difficult problem
of blind image deconvolution has numerous possibilities for study. It is the procedure of estimating the
true image f (x,y) as well as the blur kernel h(x,y) from the degraded image g(x,y) characteristics, us-
ing partial image information. Mathematically, this problem can be formulated as the linear spatially
invariant (LSI) system

g(x,y) = h(x,y)∗ f (x,y)+ ε(x,y), (1)
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where ∗ represents the convolution operation and ε(x,y) the errors (modeling, linearization, and the other
unmodeled errors often called noise).

In many applications including astronomical speckle imaging [4], remote sensing [22], and medical
imaging [8, 10, 16, 29], deconvolution is performed for image restoration. Generally, the PSF h(x,y)
is assumed to be specifically defined before the deconvolution process, and the problem of restoring the
sharp image is known as the traditional linear non-blind image deconvolution problem. In this case, there
are a variety of well-known techniques in the long list of deconvolution methods, such as inverse filter-
ing, Wiener filtering, least-squares (LS) filtering, recursive Kalman filtering, and constrained iterative
deconvolution methods [5, 14, 15].

Unfortunately, the blur is often unknown in many realistic cases, and little information about the true
image is available. By using partial or no knowledge of the blurring process and the true image, the
original image f (x,y) should then be determined directly from g(x,y). Such a problem refers to finding
estimates f̃ and h̃ for f and h based on g and prior knowledge about f , h, and ε , assuming the linear
degradation model (1).

For image processing applications, there are different motivating facts behind the use of blind decon-
volution. In reality, having a priori data about the imaged scene is often expensive, risky, or physically
impractical. For example, it is hard to statistically model the original image in applications such as re-
mote sensing and astronomy, or even know specific details about scenes that have never been imaged
before [4, 22]. Furthermore, the degradation due to blurring can not be defined precisely. In aerial imag-
ing and astronomy, the blurring can not be properly modeled as a random process since PSF fluctuations
are difficult to characterize [27]. In real-time image processing, such as medical video-conferencing, it is
not possible to predetermine the PSF parameters to directly deblur images [7]. In addition, online iden-
tification techniques used to estimate degradation can lead to substantial errors that can produce artifacts
in the restored image [25].

The physical necessities for enhanced image quality are unrealizable in other applications. For ex-
ample, the physical weight of a high-resolution camera in space exploration might exceed practical con-
straints. Similarly, enhanced image quality occurs in x-ray imaging with increased incidental x-ray beam
strength, which is harmful to the health of a patient [10]. Therefore, blurring is possible. The hardware
available to measure the imaging system’s PSF is often hard to use in such circumstances. Though these
methods work well to determine the PSF, they are esoteric, restricting their widespread use [16,27]. Blind
image deconvolution is a feasible option for enhancing the image quality without the need for complex
methods of calibration.

Finally, adaptive-optics devices can be used to compensate for blurring degradations for applications
such as astronomy, but the high cost of these systems makes the imaging impractical for certain obser-
vational facilities. The use of cheaper, partially compensating systems can result in phase errors. Post-
processing, such as blind deconvolution, is needed in either situation to improve image quality [24, 26].

It is obviously clear that an algorithmic approach is required to combine sharp image recovery and
blur kernel estimation. Blind deconvolution is in this sense a practical method for image restoration.
Recent research in literature [3, 9, 12, 17, 18, 20, 27, 28] has in fact shown its value.

Blind image deconvolution is a highly ill-posed problem since there are infinite pairs of solutions. To
get the ideal solution, some additional assumptions on f and h must be introduced, and by allowing both
sharp image recovery and PSF identification to interact we can better avoid ringing artifacts and local
minima.

Despite obtaining a certain level of development, blind deconvolution is limited in its success by
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complicated application conditions, which make the blur difficult to achieve and be spatially variant.
However, many novel practical approaches have been presented to handle this problem, driven by a
variety of motivations.

The majority of existing methods fall into the class of joint identification methods, where the image
and blur are identified simultaneously. However, in practice, many methods in this category use an
alternating approach to estimate f and h rather than truly finding the joint solution.

In this article, we solve this blind problem. As both the sharp image f and the blur kernel h need
to be updated at the same time, we use an iterative algorithm to optimize the parameters by applying an
alternating minimization scheme.

The remaining of this paper is set out like the following. The second section reviews the supervised
Bayesian approach. It exposes then the problem statement and explains the proposed model. A the-
oretical analysis revealing the existence of the solution to the problem has been presented. Section 3
addresses the experimental protocol and discusses the obtained results. Finally, a conclusion outlines the
key points covered in the article.

2 Methods

In this section, we review the supervised Bayesian technique based on a Bayesian estimation using
simple prior models to assign all the unknown parameters. Then, we extend this method by adding H1

regularization terms on both the sharp image and the blur kernel, and by suggesting useful techniques to
deal with the estimation of the smoothing parameters. Theoretically, we give a detailed description of
the convergence behavior of our model, and we derive the proposed efficient alternating minimization
algorithm.

2.1 Bayesian approach

From this point, the main objective is to infer on f and h given the forward model

g = H f + ε, (2)

where H represents the 2D convolution matrix obtained from the PSF of the imaging system [13]. This
model is the discretized version of model (1), referring the reader to [21] for more details on this dis-
cretization.

In the reconstruction problems, we use the Bayes rule:

p( f ,h|g) = p(g| f ,h)p( f )p(h)
p(g)

(3)

∝ p(g| f ,h)p( f )p(h),

to obtain what is called the posterior law p( f ,h|g) from the likelihood p(g| f ,h) and the prior laws p( f )
and p(h), and we can infer on f and h using this law.
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2.1.1 Bayesian estimation with simple prior

As in blind deconvolution, both f and h are unknown, the Bayesian inference approach is based on the
posterior law:

p( f ,h|g,θ1,θ2,θ3) =
p(g| f ,h,θ1)p( f |θ2)p(h|θ3)

p(g|θ1,θ2,θ3)
(4)

∝ p(g| f ,h,θ1)p( f |θ2)p(h|θ3),

where the term p(g| f ,h,θ1) is the likelihood, p( f |θ2), p(h|θ3) are the prior models, θ = (θ1,θ2,θ3)
contains their corresponding parameters (often called the hyper-parameters of the problem, e.g., the
variances vε , v f , and vh of the noise ε , the true image f , and of the blur kernel h, respectively), and
p(g|θ1,θ2,θ3) is the evidence of the model. This is shown in the following scheme:

θ3

?

p(h|θ3)

prior of h

�

θ2

?

p( f |θ2)

prior of f

�

θ1

?

p(g| f ,h,θ1)

likelihood

−→ p( f ,h|g,θ)

posterior

−→ f̃ , h̃

2.1.2 Supervised Bayesian approach

We consider ε , vε , v f , and vh are known, then the expression of the likelihood is:

p(g| f ,h,vε) = N (g|H f ,vε I). (5)

The priors for f and h are:
p( f |v f ) = N ( f |0,v f I), (6)

and
p(h|vh) = N (h|0,vhI). (7)

The joint posterior of all the unknowns becomes:

p( f ,h|g,vε ,v f ,vh) ∝ p(g| f ,h,vε)p( f |v f )p(h|vh). (8)

We get the following estimates:

( f̃ , h̃) = argmax
( f ,h)

{
p( f ,h|g,vε ,v f ,vh)

}
= argmax

( f ,h)

{
exp
(
− 1

2vε

‖g−H f‖2
2

)
exp
(
− 1

2v f
‖ f‖2

2

)
exp
(
− 1

2vh
‖h‖2

2

)}
= argmin

( f ,h)

{
1

2vε

‖g−H f‖2
2 +

1
2v f
‖ f‖2

2 +
1

2vh
‖h‖2

2

}
. (9)

Then, the functional to be minimized is

J( f ,h) =
1

2vε

‖g−H f‖2
2 +

1
2v f
‖ f‖2

2 +
1

2vh
‖h‖2

2

∝ ‖g−H f‖2
2 +λ f ‖ f‖2

2 +λh‖h‖2
2, (10)
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where
λ f =

vε

v f
, and λh =

vε

vh
.

Observe that the regularization-based approaches using the L2 norm fall into the Bayesian category.
In regularization approaches, the cost function is chosen as the error function ‖g−H f‖2

2. The regulariza-
tion terms D f and Dh are used to impose additional constraints on the optimization problem. In general,
these constraints guarantee the smoothness of the image and the blur, and the effect of the smoothing
terms is controlled by the regularization parameters.

2.2 The proposed method

Based on the non-blind case we performed [19], and in the situation where ε , vε , v f , and vh are known,
we can use the JMAP estimation. As mentioned, this estimation is unstable and suffers from significant
ringing artifacts in various applications. To overcome these limitations, we propose a regularized version
using H1 regularization terms for both f and h, by adding D f = ‖∇ f‖2

2 and Dh = ‖∇h‖2
2 to the functional

(10), which gives the following energy minimization model

argmin
( f ,h)

{
‖g−H f‖2

2+λ f ‖ f‖2
2+λ1‖∇ f‖2

2+λh‖h‖2
2+λ2‖∇h‖2

2
}
, (11)

where ∇ = (∇x,∇y) is the gradient operator combined by difference operators along horizontal and
vertical directions. The last four terms are regularization terms, which ask that f and h should be smooth
in H1 sense.

The staircase effect where the smooth regions in the original image are recovered as piecewise smooth
regions is partly due to the fact that the used norms are not biased against discontinuous nor continuous
functions (e.g., the total variation norm (TV-norm) :=‖ ∇u ‖1). The functional

Du =
∫

Ω

|∇u|2dxdy,

has a strong bias against discontinuous functions [11, Page 142], so this model substantially reduces the
staircase effect and recovers the smooth region’s value in the image.

To discretize the gradient using a finite difference scheme, we apply the Neumann boundary condi-
tion, which is a natural option in image processing [23]. This kind of boundary condition requires that
λ f 6= 0 and λh 6= 0 in order to prove the coercivity of the proposed functional in the space H1(Ω)×H1(Ω),
Ω is a bounded Lipschitz domain in R2, and then the existence of a solution of the minimization problem
(11). Numerically, this alternative significantly reduces the appearance of a blurring effect in the result-
ing images instead of setting λ f at 0, using an empirical reduction rule to set it from large to small, and
by setting λh to a suitable value depending on the degradation case.

Before studying the existence of the solution for our minimization problem, an important issue is
first addressed. It concerns the finiteness of image domain Ω in most practical applications. The domain
Ω is often finite such as a disk or a square, in which case the blur

H f = h∗ f (x) =
∫
R2

h(x− y) f (y)dy, x ∈Ω,

has to be properly defined since f is only available on Ω.
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There are two different ways to overcome this obstacle. First, we can modify the assumption of shift
invariance of the linear operator H by allowing shift variance on Ω (H is said to be shift-invariant if for
any a ∈ R2,g0(x) = H[ f (x)] implies that g0(x−a) = H[ f (x−a)]). Then, the blur operator H f remains
linear, but can have a shift-variant PSF such as

h(x,y) =
h(x− y)∫

Ω
h(x− z)dz

, ∀x,y ∈Ω,

for which the linear blur is updated to

H f =
∫

Ω

h(x,y) f (y)dy. (12)

The second method to handle the finite domain Ω is to extrapolate f beyond Ω, rather than modifying
the shift-invariant kernel within Ω as we did above. Let

P : f |Ω −→ f̄ = P( f )|R2 ,

be an appropriate linear extrapolation operator which extends f on Ω onto the entire plane (we can
consider the linear operator P from H1(Ω) to H1(R2)). Then, the blur can be modified to

H f (x) = h∗ f̄ (x) = h∗P( f )(x) ∀x ∈Ω,

or equivalently, H = 1Ω.(h∗P), where 1Ω(x) is treated as a multiplier.
More generally, suppose P is represented by some kernel k(x,y) with y ∈ Ω and x ∈ R2. Then, the

modified H is given by (12), where

h(x,y) =
∫
R2

h(x− z)k(z,y)dz, x,y ∈Ω.

For a detailed description of the above approaches, see [6].

2.2.1 The convergence behavior

We will prove the existence of the minimizer for the functional F defined by

F : H1(Ω)×H1(Ω) −→ R
( f ,h) 7−→ ‖g−H f‖2

2 +λ f ‖ f‖2
2 +λ1‖∇ f‖2

2 +λh‖h‖2
2 +λ2‖∇h‖2

2
(13)

The proof is decomposed into three main steps

• H1(Ω)×H1(Ω) is a Hilbert space as the product of two Hilbert spaces, equipped with the norm

‖( f ,h)‖H1(Ω)×H1(Ω) =
(
‖ f‖2

H1(Ω)+‖h‖
2
H1(Ω)

)1/2
.

• F is coercive on H1(Ω)×H1(Ω):

F( f ,h)≥ λ f ‖ f‖2
2 +λ1‖∇ f‖2

2 +λh‖h‖2
2 +λ2‖∇h‖2

2

≥ α(‖ f‖2
2 +‖∇ f‖2

2 +‖h‖2
2 +‖∇h‖2

2)

≥ α(‖ f‖2
H1(Ω)+‖h‖

2
H1(Ω)), (14)

where α = min(λ f ,λ1,λh,λ2)> 0.
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• F is sequentially weakly lower semicontinuous.
Let ( fn,hn)n be a minimizing sequence. F is coercive, then we can obtain a uniform bound

‖( fn,hn)‖H1(Ω)×H1(Ω) ≤C, C > 0.

The space H1(Ω)×H1(Ω) is reflexive, then by weak sequential compactness theorem (see [2])
we can deduce the existence of ( f̃ , h̃) ∈ H1(Ω)×H1(Ω) and of a subsequence denoted also by
( fn,hn)n such that

( fn,hn)
H1(Ω)×H1(Ω)
⇀ ( f̃ , h̃).

The subsequence ( fn,hn)n is bounded in H1(Ω)×H1(Ω) and since the embedding H1(Ω) ↪→
L2(Ω) is compact, then ( fn,hn)n has a subsequence (still denoted by ( fn,hn)n) convergent in L2(Ω),
we get finally  fn

H1(Ω)
⇀ f̃

hn
H1(Ω)
⇀h̃

and

 fn
L2(Ω)−→ f̃

hn
L2(Ω)−→ h̃

(15)

As the convergence in L2 implies L2 norm convergence, we obtain{
‖ fn‖2

2 −→ ‖ f̃‖2
2

‖hn‖2
2 −→ ‖h̃‖2

2
(16)

From the weakly convergent sequence ( fn,hn)n in H1(Ω)×H1(Ω) and the weak continuity of
operator ∇ : H1(Ω)→ L2(Ω), we get ∇ fn

L2(Ω)
⇀∇ f̃

∇hn
L2(Ω)
⇀∇h̃

(17)

which implies that liminf
n→+∞

‖∇ fn‖2
2 ≥ ‖∇ f̃‖2

2

liminf
n→+∞

‖∇hn‖2
2 ≥ ‖∇h̃‖2

2
(18)

For the fidelity term, we have∣∣∣∣∫
Ω

(hn ∗ fn−g)2−
∫

Ω

(h̃∗ f̃ −g)2
∣∣∣∣= ∣∣∣∣∫

Ω

(hn ∗ fn−g− h̃∗ f̃ +g)(hn ∗ fn−g+ h̃∗ f̃ −g)
∣∣∣∣

≤ ‖hn ∗ fn− h̃∗ f̃‖2‖hn ∗ fn + h̃∗ f̃ −2g‖2

≤ ‖hn ∗ ( fn− f̃ )+(hn− h̃)∗ f̃‖2
(
‖hn‖1‖ fn‖2 +‖h̃‖1‖ f̃‖2 +2‖g‖2

)
≤
(
‖hn‖1‖ fn− f̃‖2 +‖hn− h̃‖2‖ f̃‖1

)(
‖hn‖1‖ fn‖2 +‖h̃‖1‖ f̃‖2 +2‖g‖2

)
.

As ‖ fn‖H1(Ω) ≤C (respectively ‖hn‖H1(Ω) ≤C), then

‖ fn‖L2(Ω) ≤C (respectively‖hn‖L2(Ω) ≤C).
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Using the Sobolev injection L2(Ω) ↪→ L1(Ω), we have

‖hn‖L1(Ω) ≤ K.

Finally, we obtain
‖hn ∗ fn−g‖2

2 −→ ‖h̃∗ f̃ −g‖2
2.

Then, according to the following theorem (see [2, Page 91])

Theorem 1 (Existence). Let E be a reflexive Banach space and F : E −→ R is a sequentially weakly
lower semicontinuous and coercive function, then the problem infu∈E F(u) has a solution. Furthermore,
if F is strictly convex, then this solution is unique.

( f̃ , h̃) is a minimizer of functional F in the space H1(Ω)×H1(Ω). Unfortunately, this solution is not
unique. If, for example, ( f ,h) is a solution of (11), then (− f ,−h) is also a solution.

2.2.2 Alternating minimization algorithm

In the Fourier domain, our model (11) is equal to

argmin
(F ,H )

{
‖G −H F‖2

2 +λ f ‖F‖2
2 +λ1‖DF‖2

2 +λh‖H ‖2
2 +λ2‖DH ‖2

2
}
, (19)

where F , H , G , and D = (Dx,Dy) are the Fourier transforms of f , h, g, and ∇ = (∇x,∇y), respectively,
and we have

‖DU ‖2
2 = ‖DxU ‖2

2 +‖DyU ‖2
2. (20)

By taking the Wirtinger derivative of functional in (19) with respect to H and F respectively, and
setting the result to be zero, we get the Euler-Lagrange equations{

−FG + |F |2H +λhH +λ2|D|2H = 0
−H G + |H |2F +λ f F +λ1|D|2F = 0

(21)

where |D|2 = |Dx|2 + |Dy|2.
When F is given, we can obtain the optimized expression for H :

H̃ =
FG

|F |2 +λh +λ2|D|2
. (22)

Then, we can obtain F using the previous H :

F̃ =
H G

|H |2 +λ f +λ1|D|2
. (23)

We use inverse Fourier transforms to get the estimations.
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Algorithm 1 Blind MAP-H1 algorithm in Fourier domain

1: Compute the regularization operator D = (Dx,Dy).
2: Initialization: f = g, h = δ the Dirac function, λ f , λh, r, λ min

f .
3: repeat Optimizing h and f
4: Calculate λ1 and λ2 using the subproblems of F and H respectively, and the GCV function obtained

in our paper [19].
5: Update H defined in (22).
6: Find the inverse Fourier transform of H .
7: Impose the kernel constraint using projection on the convex set: C1 := {h/h≥ 0,∑

n
h(n) = 1}.

8: Update F using H in the previous step with the help of (23).
9: Find the inverse Fourier transform of F .

10: Impose the image constraint using projection on the convex set: C2 := { f /0≤ f (n)≤ 1,∀n}.
11: Set λ f from large to small according to the empirical reduction rule: λ

t+1
f = max

(
λ t

f .r,λ
min
f

)
.

12: end Iterations have been performed
13: Output: f̃ , h̃

3 Results and discussion

In the present section, we give experimental results of the proposed algorithm and compare it with the
popular state-of-the-art blind image deconvolution methods, including the blind Richardson-Lucy algo-
rithm and the iterative Wiener filter method.

Note that, our algorithm is not sensitive to the initial guess of the image and the kernel we used. Fur-
thermore, as it is well known, the stopping criteria play a major role in iterative algorithms. However, in
our case, it was not easy to find good criteria for our test data. Therefore, based on interactive monitoring
of the iterative processes, we stop the iteration when the change in the reconstruction obtained from an
iteration step was no longer observable.
Any algorithm that implements deconvolution in Fourier domain should do something to avoid ringing
artifacts at the image boundaries. We add black boundaries with 50 pixels on each side of the test images
in all experiments, and we process the image near the boundaries using the MATLAB edgetaper com-
mand in the iterative Wiener filter algorithm.
Generally, the Richardson-Lucy algorithm takes considerable computation to obtain a stable solution. In
the blind case, it becomes a very challenging problem, and we consider the number of iterations as the
stopping criterion.

We use five images in our tests, which are the standards for image processing (Figure 1). The de-
graded versions are obtained by convolving these original images with the following blur kernels:

• Binary blur kernel of size 21×21 with normalized elements to sum 1 (Figure 2).

• Gaussian blur kernel of size 20×20 with standard deviation 3 (fspecial(‘gaussian’, 20, 3)).

• Motion blur kernel of length 15 (fspecial(‘motion’, 15)).
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Figure 1: Set of five images used in the tests. This is a set of five images used as an original image in the
tests.

Figure 2: First kernel of convolution. The first kernel used to blur images.

The quality of the reconstructions evaluated using two criteria: the peak signal to noise ratio (PSNR)
given below:

PSNR( f̃ , f ) = 10log10(
2552

1
st ‖ f̃ − f ‖2

2
),

where s and t are numbers of row and column of the image. The second criterion is the structural
similarity index measure (SSIM), which is an image quality metric that assesses the visual impact of
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Figure 3: Test on a synthetic image degraded by kernel 2. (a) Original image; (b) kernel of convolution;
(c) degraded image; (d) and (e) are restored image and estimated kernel, respectively, using our approach;
(f) the error plot using (c) and the degraded image obtained from (d) and (e).

three characteristics of an image: luminance, contrast, and structure. Both metrics are popular standard
image quality measures that are quite used in comparing image restoration results.

We show the blind image deconvolution reconstructions of the first test we performed (Figure 3),
which illustrate the effectiveness of our approach in both image restoration and kernel estimation.
Visually, we have obtained a restored image (d) and an estimated kernel (e) that are very close to the
true ones: (a) and (b). For quantitative comparison, we were able to produce a sharp image with a PSNR
that exceeds twice the initial value and a remarkable SSIM much greater than the first one. We calcu-
lated also the mean squared error (MSE(h̃,h) =E(‖h̃−h‖2

2)), which is a standard measure for estimating
errors of kernels when they are normalized and have the same size. It is obvious that the MSE of the
proposed approach is much smaller, which implies that our algorithm gives a better estimation of the blur
kernel too. The error plot (f) that uses the degraded image (c) and the degraded image obtained from (d)
and (e) confirms these results. It is clear that our method succeeds to restore the finer details in the image.
For the remaining tests, we present the results in Figures 4, 5, 6, 7, and 8, and PSNR and SSIM values in
Tables 1, 2, and 3. In all these cases, we have found that our technique can successfully deblur the most
degraded images compared with the iterative Wiener filter method and the blind Richardson-Lucy algo-
rithm. We can observe that the restored images using these two approaches are still somewhat blurry and
the ringing artifacts are obvious here. The proposed model gives better deblurring results as the edges
are sharper and the ringing artifacts are negligible. Several close-ups in the figures also illustrate the high
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quality achieved in the reconstruction using our approach: oversmoothing is strongly reduced and small
details are recovered. In terms of image quality measures, the proposed blind MAP−H1 model has the
highest PSNR and SSIM values among all, the blind Richardson-Lucy algorithm is the second-best, in
general, followed by the iterative Wiener filter method.

Table 1: PSNR and SSIM values obtained by three methods for five different images degraded by kernel
1. For each test setting, four results are provided: Blurred, blind Richardson-Lucy (RL) algorithm,
iterative Wiener filter (IWF) method, and our proposed blind MAP-H1 model. Bold format: the best
score in each line.

Image Size Measure Blurred Method
Blind RL IWF Blind MAP-H1

Cameraman 512×512 PSNR 24.66 28.83 28.49 30.67
SSIM 0.7824 0.6639 0.6380 0.8570

House 256×256 PSNR 25.09 29.36 29.89 31.48
SSIM 0.7379 0.8018 0.7576 0.8774

Couple 512×512 PSNR 24.17 29.38 30.48 31.62
SSIM 0.6127 0.8401 0.8734 0.9029

Pirate 512×512 PSNR 24.75 29.78 29.74 31.49
SSIM 0.6268 0.8367 0.7847 0.8751

Boat 512×512 PSNR 23.98 29.25 30.36 30.63
SSIM 0.6181 0.8264 0.8603 0.8726

Table 2: PSNR and SSIM values obtained by three methods for five different images degraded by kernel
2. For each test setting, four results are provided: Blurred, blind Richardson-Lucy (RL) algorithm,
iterative Wiener filter (IWF) method, and our proposed blind MAP-H1 model. Bold format: the best
score in each line.

Image Size Measure Blurred Method
Blind RL IWF Blind MAP-H1

Cameraman 512×512 PSNR 24.38 28.88 29.05 30.12
SSIM 0.7737 0.8567 0.8687 0.8844

House 256×256 PSNR 24.74 27.69 27.88 29.10
SSIM 0.7264 0.7510 0.7702 0.7821

Couple 512×512 PSNR 23.60 26.13 26.58 26.82
SSIM 0.5625 0.6928 0.7200 0.7334

Pirate 512×512 PSNR 24.67 27.37 27.17 28.27
SSIM 0.6282 0.7392 0.7338 0.7830

Boat 512×512 PSNR 23.63 27.03 26.94 27.49
SSIM 0.5939 0.7427 0.7418 0.7648
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Table 3: PSNR and SSIM values obtained by three methods for five different images degraded by kernel
3. For each test setting, four results are provided: Blurred, blind Richardson-Lucy (RL) algorithm,
iterative Wiener filter (IWF) method, and our proposed blind MAP-H1 model. Bold format: the best
score in each line.

Image Size Measure Blurred Method
Blind RL IWF Blind MAP-H1

Cameraman 512×512 PSNR 23.12 28.09 29.07 32.21
SSIM 0.7821 0.8891 0.8190 0.9015

House 256×256 PSNR 24.79 28.68 27.89 30.50
SSIM 0.7639 0.8470 0.8575 0.8325

Couple 512×512 PSNR 23.68 26.77 25.64 28.30
SSIM 0.6191 0.7796 0.7649 0.8183

Pirate 512×512 PSNR 24.04 30.04 29.99 30.91
SSIM 0.6217 0.8511 0.8598 0.8811

Boat 512×512 PSNR 23.32 28.41 28.35 29.73
SSIM 0.6408 0.8306 0.8333 0.8608

4 Conclusions

In this paper, we have considered the blind image deconvolution problem. We have extended the super-
vised Bayesian approach by adding H1 regularization terms on both the sharp image and the blur kernel,
and by proposing useful techniques to deal with the estimation of smoothing parameters. An existence
result for our model was given. The proposed algorithm is simple, easy to implement, and gives quite
satisfactory results compared to some available methods, which gives confidence in the efficiency of our
model.
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Figure 6: Deconvolution of Couple image. From left to right, the first column represents degradation by
kernel 1, the second column for the degradation by kernel 2, and by kernel 3 in the third column. From
top to bottom, the order of the rows is as follows: blurred images using the three kernels respectively,
restored images using blind Richardson-Lucy algorithm [12], restored images using iterative Wiener
filter method [3], and finally the restored images using our proposed blind MAP-H1 model.
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Figure 7: Deconvolution of Pirate image. From left to right, the first column represents degradation by
kernel 1, the second column for the degradation by kernel 2, and by kernel 3 in the third column. From
top to bottom, the order of the rows is as follows: blurred images using the three kernels respectively,
restored images using blind Richardson-Lucy algorithm [12], restored images using iterative Wiener
filter method [3], and finally the restored images using our proposed blind MAP-H1 model.
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Figure 8: Deconvolution of Boat image. From left to right, the first column represents degradation by
kernel 1, the second column for the degradation by kernel 2, and by kernel 3 in the third column. From
top to bottom, the order of the rows is as follows: blurred images using the three kernels respectively,
restored images using blind Richardson-Lucy algorithm [12], restored images using iterative Wiener
filter method [3], and finally the restored images using our proposed blind MAP-H1 model.
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