تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,245,908 |
تعداد دریافت فایل اصل مقاله | 6,899,634 |
مقایسه شاخصهای جوانهزنی، صفات مورفو-فیزیولوژیک و بیوشیمیایی بذور و گیاهچههای گوار و نخود تحت کاربرد سطوح مختلف نانوذرات روی و آهن | ||
علوم و تحقیقات بذر ایران | ||
مقاله 5، دوره 8، شماره 3، مهر 1400، صفحه 259-274 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jms.2021.5229 | ||
نویسندگان | ||
سید حمیدرضا رمضانی* 1؛ مهدی الهرسانی2 | ||
1استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی سرایان، دانشگاه بیرجند | ||
2کارشناس ارشد اگرواکولوژی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بیرجند. | ||
چکیده | ||
بهمنظور بررسی اثر نانوذرات و غلظتهای مختلف آنها بر مراحل جوانهزنی، رشد و نمو گیاهان زراعی، آزمایشهایی بهصورت فاکتوریل در قالب طرح کاملا تصادفی بر بذور گوار و نخود در کشت پتریدیش و گلدانی صورت گرفت. در کشت پتریدیش، اثر غلظتهای مختلف نانوذرات روی و آهن (شاهد، 100، 200 و 300 میلیگرم بر لیتر) بر شاخصهای جوانهزنی بذر و در کشت گلدانی اثرات غلظتهای مذکور نانوذرات روی و آهن بر صفات رشدی، فیزیولوژیک و بیوشیمیایی گیاهچههای گوار و نخود بررسی شدند. نتایج آزمایش پتریدیش نشان داد که بیشترین درصد جوانهزنی، مقاومت ریشهچه و کمترین زمان رسیده به 50 درصد جوانهزنی تحت برهمکنش نخود × نانوذره آهن×300 میلیگرم بر لیتر حاصل شد. همچنین، بیشترین سرعت جوانهزنی برای بذور گوار و نخود تحت غلظت 300 میلیگرم بر لیتر نانوذره آهن حاصل شد. نتایج آزمایش گلخانهای نیز نشان داد که بیشترین طول ساقه، وزن خشک اندامهای هوایی و ریشه برای گیاه گوار تحت غلظت 300 میلیگرم بر لیتر نانوذره روی به دست آمد. همچنین، محتوای کلروفیل a، کلروفیل کل و پروتئین برگ تحت کاربرد 300 میلیگرم بر لیتر نانوذره روی افزایش یافت. از طرفی، میزان کلروفیل b و کاروتنوئیدها تحت غلظت 300 میلیگرم بر لیتر نانوذره آهن بیشتر شد. بهطور کلی، نتیجهگیری میشود که نانوذرات روی و آهن در محدوده غلظتهای 300-100 میلیگرم بر لیتر دارای اثرات مثبتی بر شاخصهای جوانهزنی، رشدی، فیزیولوژیک و بیوشیمیایی بذور و گیاهچههای گوار و نخود میباشند. | ||
کلیدواژهها | ||
پروتئین برگ؛ جوانهزنی بذر؛ رنگیزههای گیاهی؛ گوار؛ نانوتکنولوژی؛ نخود | ||
مراجع | ||
Amiri, S.R., Parsa, M., Bannayan Aval, M., Nassiri Mahallati, M. and Deihimfard, R. 2015. Effect of irrigation and nitrogen fertilizer levels on yield and yield components of chickpea (Cicer arietinum L.) under Mashhad climatic conditions. Iranian Journal of Pulses Research, 6(1): 66-77. (In Persian)(Journal) Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris. Plant Physiology, 24: 1-15. (Journal) Aslani, F., Bagheri, S., Julkapli, N.M., Juraimi, A.S., Hashemi, F.S. and Baghdadi, A. 2014. Effects of engineered nanomaterials on plants growth. The Scientific World Journal, 10: 1-29. (Journal) Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A. and Puntes, V. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75: 850-857. (Journal) Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Plant Physiology, 72: 248-254. (Journal) Burman, U., Saini, M. and Kumar, P. 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95(4): 605-612. (Journal) Canas, J.E., Long, M.Q., Nations, S., Vadan, R., Dai, L. and Luo, M.X. 2008. Effects of functionalized and nonfunctionalized singlewalled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27: 1922-1931. (Journal) Dastborhan, S., Ghassemi-Golezani, K. and Yeganehpoor, F. 2019. Changes in germination and growth indices of borage (Borago officinalis L.) in response to seed priming and different irrigation intervals. Iranian Journal of Seed Science and Research, 6(1): 1-18. (In Persian)(Journal) Daughton, C.G. and Ternes, T.A. 1999. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives, 107: 907–938. (Journal) Davis, J.G., Hossner, L.R. and Persaud, N. 1993. Elemental toxicity effects on the germination and growth of pearl millet seedlings. Journal of Plant Nutrition, 16: 1957-1968. (Journal) El-Temsah, Y.S. and Joner, E.J. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27: 42-49. (Journal) Eskandarinasab, M., Rafieiolhossaini, M., Roshandel, P. and Tadayon, M.R. 2019. Investigation of Seed Germination Indices and Anthocyanin Content of Niger (Guizotia abyssinica) Seedling under the Effect of Three Nanoparticles. Iranian Journal of Seed Research, 5(2): 73-89. (In Persian)(Journal) Esparham, E., Saeidisar, S., Mahmoodzadeh, H. and Hadi, M.R. 2017. The Effects of Zinc Oxide (ZnO) Nanoparticles on the Germination, Biochemical and Ultrastructural Cell Characteristics of Ricinus communis. Journal of Cell and Tissue, 8(2): 151-165. (In Persian)(Journal) Fediuc, E. and Laszlo Erdei, A. 2002. Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in phragmites Australia and Typha latifolia. Plant Physiology, 5: 129-132. (Journal) Ganjeali, A., Joveynipour, S., Porsa, H. and Bagheri, A. 2011. Selection for drought tolerance in Kabuli chickpea genotypes in Nishabur region. Iranian Journal of Pulses Research, 2: 27-38. (In Persian)(Journal) Gao, F.Q., Hong, F.S., Liu, C., Zheng, L., Su, M.Y., Wu, X., Yang, F., Wu, C. and Yang, P. 2006. Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biological Trace Element Research, 11: 239-254. (Journal) Hediat, M. and Salama, H. 2012. Effect of cilver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Research Journal of Biotechnology, 3(10):190-197. (Journal) Hirt, H., Casari, G. and Barta, A. 1989. Cadmium echanced gene expression in suspension culture cells of tobacco. Planta, 179: 414-426. (Journal)
Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P. 2005. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105: 269-279. (Journal) Kafi, M., Zand, A., Kamkar, B., Abbasi, F., Mahdavi Damghani, M. and Sharifi, H.R. 2008. Plant physiology (4th Ed.). Jahad Daneshgahi Mashhad Press. (In Persian)(Book) Kapustka, L.A. and Reporter, M. 1993. Terrestrial Primary Producers. In: Ecotoxicology. Blackwell Scientific Publications (Ed.p.Calow), London. (Book) Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. and Biris, A.S. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramtically affect seed germination and plant growth. American Chemical Society, 3(10): 3221-3227. (Journal) Lichtenthaler, H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology, 148: 350-382. (Journal) Lin, D. and Xing, B. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 20: 1-8. (Journal) Loggale, L.B. 2018. Responses of guar to supplemental irrigation in heavy clay soils of Abu Naama. IOSR Journal of Agriculture and Veterinary Science; 11(9): 12-16. (Journal) Ma, X., Geiser-Lee, J., Deng, Y. and Kolmakov, A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16): 3053-3061. (Journal) Mahajan, P., Dhoke, S.K. and Khanna, A.S. 2011. Effect of Nano-ZnO particle suspension on growth of mung (Vigna radiate) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011: 1-7. (Journal) Mahdi Nezhad, N., Mousavi, H., Fakheri, B. and Heidari, F. 2019. The assesment of the effects of the nanoparticles on some physiological traits changes, photosynthetic pigments and the prthenolide of chamomile plant (Tanacetum parthenium) under Water dificit stress. Journal of Plant Process and Function, 8 (29): 219-227. (Journal) Mahmoodzadeh, H. and Aghili, R. 2014. Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 nanoparticles. Journal of Chemical Health Risks, 4(1): 29-36. (Journal) Mansouri Gandomani, V., Omidi, H. and Bostani, A.A. 2019. Study on effects of pretreatment nanoparticle silicon dioxide (SiO2) on seed germination and biochemical indicate of soybean (Glycine max L.) cultivars Williams under salinity. Iranian Journal of Seed Science and Research, 6(3): 299-315. (In Persian)(Journal) Mazaheri Tirani, M., Madadkar Haghjou, M. and Ismaili, A. 2019. Effect of bulk and nano zinc oxide on seed germination and growth indices in tobacco (Nicotiana tabacum L.) seedlings. Iranian Journal of Seed Science and Research, 6(3): 369-380. (In Persian)(Journal) Mohamadipoor, R., Sedaghathoor, Sh. and Mahboub-Khomami, A. 2013. Effect of application of iron fertilizers in two methods 'foliar and soil application' on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology, 3: 232-240. (Journal) Monica, C.R. and Cremonini, R. 2009. Nanoparticles and higher plants. Cariologia, 62: 161-165. (Journal) Racuciu, M. and Creanga, D. 2007. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian Journal of Physics, 52: 395-402. (Journal) Rout, G.R. and Das, P. 2002. Rapid hydroponic screening for molybdenum tolerance in rice through morphological and biochemical analysis. Rostlinna Vyroba, 48: 505–512. (Journal) Sayedena, S.V., Pilehvar, B., Abrari-vajari, K., Zarafshar, M. and Eisvand, H.R. 2019. Effects of TiO2 Nanoparticles on Germination and Primary Growth of Mountain Ash (Sorbus luristanica). Iranian Journal of Seed Research, 6(1): 173-184. (In Persian)(Journal) Tadayon, M.R. and Norouzi, S. 2015. Effect of nano titanium oxide, nano zinc and multiwall carbon nano tube on yield and yield components of green gram (vigna radiate L.). Journal of Crop Improvement, 17(1): 169-182. (In Persian)(Journal) Tadayon, M.R., Falah, S., Fadaei Tehrani, A.A and Norouzi, S. 2013. Effects of multi wall carbon nanotube and nanosilver on some physiological and morphological traits of faba bean (Vicia faba L.). Journal of Plant Process and Function, 2(5): 61-72. (In Persian)(Journal)
Van Dongen, J.T., Ammerlaan, A.M.H., Wouterlood, M., Van Aelst, A.C.V. and Borstlap, A.C. 2003. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Annals of Botany, 91: 729-737. (Journal) Xiong, Z.T. 1998. Lead uptake and effects on seed germination land plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bulletin Environmental Contamination and Toxicology, 60: 285-291. (Journal) Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C. and Yang, P. 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110: 179-190. (Journal) Yazdani Biuki, R.R., Rezvani Moghaddam, P., Khazaie, H.R., Ghorbani, R. and Astaraei, A.R. 2011. Effects of salinity and drought stresses on germination characteristics of milk thistle (Silybum marianum). Iranian Journal of Field Crops Research, 8(1): 12-19. (In Persian)(Journal) Zheng, L. Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104: 83-91. (Journal) | ||
آمار تعداد مشاهده مقاله: 777 تعداد دریافت فایل اصل مقاله: 538 |