تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,698 |
تعداد دریافت فایل اصل مقاله | 6,898,222 |
An efficient wavelet-based numerical method to solve nonlinear Fredholm integral equation of second kind with smooth kernel | ||
Journal of Mathematical Modeling | ||
دوره 10، شماره 2، شهریور 2022، صفحه 299-313 اصل مقاله (7.61 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2021.20512.1785 | ||
نویسندگان | ||
Jyotirmoy Mouley* 1؛ Birendra Nath Mandal2 | ||
1Department of Applied Mathematics, University of Calcutta, Kolkata, India | ||
2Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India | ||
چکیده | ||
In this paper, a wavelet-based numerical algorithm is described to obtain approximate numerical solution of a class of nonlinear Fredholm integral equations of second kind having smooth kernels. The algorithm involves approximation of the unknown function in terms of Daubechies scale functions. The properties of Daubechies scale and wavelet functions together with one-point quadrature rule for the product of a smooth function and Daubechies scale functions are utilized to transform the integral equation to a system of nonlinear equations. The efficiency of the proposed method is demonstrated through three illustrative examples. | ||
کلیدواژهها | ||
Nonlinearity؛ Fredholm integral equation؛ Daubechies wavelet function؛ one-point quadratute rule | ||
آمار تعداد مشاهده مقاله: 676 تعداد دریافت فایل اصل مقاله: 1,001 |