تعداد نشریات | 31 |
تعداد شمارهها | 738 |
تعداد مقالات | 6,956 |
تعداد مشاهده مقاله | 9,883,554 |
تعداد دریافت فایل اصل مقاله | 6,707,742 |
تاثیر هگزیتیازوکس، نانوسولفور، کامپوزیت آلژینات/سولفور و کامپوزیت آلژینات/سولفور/هگزیتیازوکس روی کنه تارتن دو لکهای (Tetranychus urticae Koch) در شرایط آزمایشگاهی | ||
تحقیقات آفات گیاهی | ||
دوره 11، شماره 1، خرداد 1400، صفحه 43-56 اصل مقاله (1.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/iprj.2021.4844 | ||
نویسندگان | ||
مرضیه مبکی1؛ شهرام آرمیده* 1؛ سجاد پیرسا2؛ مرتضی بهرام3 | ||
1گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه | ||
2گروه صنایع غذایی دانشکده کشاورزی، دانشگاه ارومیه | ||
3گروه شیمی دانشکده علوم، دانشگاه ارومیه | ||
چکیده | ||
در تحقیق حاضر تأثیر کنهکش هگزیتیازوکس، نانوسولفور، کامپوزیتهای آلژینات/سولفور (Al/S) و آلژینات/سولفور/هگزیتیازوکس (Al/He/S) در آزمایشگاه روی افراد ماده بالغ کنه تارتن دولکهایTetranychus urticae Koch (Acari: Tetranychidae) مورد بررسی قرار گرفت. قطر نانوذرات سولفور و آلژینات سدیم/سولفور و آلژینات سدیم/سولفور/هگزیتیازوکس با استفاده از میکروسکوپ الکترونی (SEM) 300-60 نانومتر بهدست آمد. آنالیز طیفهای FT-IR سولفور و کامپوزیتهای آلژینات سدیم/سولفور و آلژینات سدیم/سولفور/هگزیتیازوکس نیز انجام گرفت؛ در طیف سولفور فقط دو پیک 870 و 3435 و در طیف آلژینات، پیکهای 1630، 1457 و 1341 مشاهده شد. بیشترین میزان کشندگی در 24، 48 و 72 ساعت در تیمار کامپوزیت (Al/He/S) به ترتیب با LC50 معادل 48/3، 80/2 و 43/2 گرم بر لیتر بهدست آمد. همچنین، کمترین میزان کشندگی در 24 ساعت در تیمار نانوسولفور باLC50 معادل 34/20 گرم بر لیتر و در 48 و 72 ساعت در تیمار نانوسولفور و کامپوزیت آلژینات/سولفور (Al/S) به ترتیب با 37/12 و 87/9 گرم بر لیتر بهدست آمد. تیمار هگزیتیازوکس با غلظت 7/12 میلیلیتر بر لیتر بعد از 72 ساعت بیشترین تلفات (70 درصد) را نشان داد. بر اساس نتایج این تحقیق، کامپوزیت (Al/He/S) قابل توصیه در تهیه فرمولاسیون تجاری هگزیتیازوکس و استفاده در برنامه مدیریت تلفیقی کنه دو لکهای میباشد. | ||
کلیدواژهها | ||
آلژینات؛ کشندگی؛ کنهدولکهای؛ نانوسولفور؛ هگزیتیازوکس | ||
مراجع | ||
Aktar, M.W., Sengupta, D. and Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology2(1): 1-12.
Alzoubi, S. and Cobanoglu, S. 2008. Toxicity of some pesticides against Tetranychus urticae Koch and its predatory mites under laboratory conditions. American-EurasianJournalofAgriculturaland Environmental Sciences 3: 30-37.
Arbabi, M. 2006. Study on effectiveness of Phytoseiulus persimilis in control of cucumber two spotted spider mite (Tetranychus urticaecomplex) in woody and iron greenhouse structures in Varamin region. Pajouhesh-Va-Sazandegi 73: 96-105. Arbabi, M. 2009. Evaluation six decades’ pesticides application to control agricultural mite pests in Iran. Extended abstract proceeding of half century pesticides uses in Iran, Iranian Research Institute of Plant Protection 145-159 pp. (In Farsi)
Attia, S., Grissa, K. L., Lognay, G., Bitume, E., Hance, T. and Mailleux, A. C. 2013. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. Journal of Pest Science 86: 361–386.
Auger, P., Guichou, S. and Kreiter, S. 2003. Variations in acaricidal effect of wettable sulfur on Tetranychus utricae (Acari: Tetranychidae): effect of temperature, humidity and life stage. Pest Management Science 59: 559–565.
Ayarza, J., Coello, Y. and Nakamatsu, J. 2017. SEM–EDS study of ionically cross-linked alginate and alginic acid bead formation. International Journal of Polymer Analysis and Characterization 22(1): 1-10.
Bollend, H. R., Gutierrez, J. and Fleischmann, C. H. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Brill Publishing, Leiden, p. 392. Dekeyser, M. A. 2005. Acaricide mode of action. Pest Management Science 61: 103–110. Dorri, H. R., Shahab Khaghani, Sh., Moghadam, A., Ghanbari, D. and Bihamta, M. R. 2018. The effect of copper nano-capsules on the control of two spotted spider mite (Tetranychus urticae). Journal of Nanostructures 8(3): 316-324. Finney, D. J. 1971. Probit Analysis. Third Edition, Cambridge University Press, London.
Guo, Y., Zhao, J., Yang, S., Yu, K., Wang, Z. and Zhang, H. 2006. Preparation and characterization of monoclinic sulfur nanoparticles by water-in-oil microemulsions technique. Powder Technology 162: 83- 86.
He, H., Zhang, C. G., Xia, J. L., Peng, A. A., Yang, Y., Jiang, H. C., Zheng, L., Ma, C. Y., Zhao, Y. D., Nie, Z. Y. and Qiu, G. Z. 2009. Investigation of elemental sulfur speciation transformation mediated by Acidithiobacillus ferrooxidans. Current Microbiology 58(4): 300-307.
Helle, W. and Overmeer, W. P. J. 1985. Toxicological test methods. In: W. Helle & Sabelis, M.W. (eds.), Spider Mites: their Biology, Natural Enemies and Control. Elsevier, Amsterdam, Oxford, New York, Tokio, 1: 391-395. Henderson, C. F. and Tilton, E. W. 1955. Test with acaricides against the brown wheat mite. Journal of Economic Entomology 48: 157-161. Hojaj, E. and Manteghian, M. 2009. Production of sulfur nanocrystal through dilution crystallization. Journal of Nanoscience and Nanotechnology 3: 19-21. Hussey, N. W. and Scopes, N. E. A. 1985. Greenhouses vegetables (Britain). In: Helle, W. and Sabelis, M. W. (Eds.), World crop pests, Spider mites, their biology, natural enemies and control. Vol. B, Elsevier Publ., Amsterdam, the Netherlands. pp. 285-297.
Jabraili, A., Pirsa, S., Pirouzifard, M. K. and Amiri, S. 2021. Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment 29(5): 1-15.
Jalalizand, A., Gavanji, S., karimzadeh Esfahani, J., Besharatnejad, M. H., Mohammad Saied Emami, M.S. and Behrouz Larki, B. 2013. The effect of silver nanoparticles on Tetranychus urticae. International Journal of Agriculture and Crop Sciences 5(8): 820-827.
Kheradmand, K., Beynaghi, S., Asgari, S. and Sheykhi Garjan, A. 2015. Toxicity and repellency effects of three plant essential oils against two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology 17: 1223-1232. Kumar, R., Kumar- Nair, K., Verma, S., Gogoi, R., Kumar, Singh P., Srivastava, C. and Gopal, A. 2012. Developing nano sulfur for mitigation of agricultural pests and better crop health. International Journal of Applied Agricultural Research 7(2): 87- 90.
Kumar, R., Nair, K. K., Alam, I., Gogoi, R., Singh, P. K, Srivastava, C., Yadav, S., Gopal, M.,Kumari, S., Chauhan, U., Kumari, A. and Nadda, G. 2017. Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). Journal of the Saudi Society of Agricultural Sciences 16(2):191-196.
Madhuban, G., Kumar, R. and Goswami, A. 2012. Nano-pesticides - A recent approach for pest control. The Journal of Plant Protection Sciences 4(2): 1-7.
Marcic, D., Peric, P. and Milenkovic, S. 2011. Acaricides-biological profiles, effects and uses in modern crop protection, pesticides formulations, effects, fate. In: Margarita Stoytcheva (Ed.), INTECH.<http://www.intechopen.com/books/pesticides-formulations-effects-fate/acaricides-biological-profiles-effects-and-uses-inmodern- crop-protection>, pp: 1–27.
Pirsa, S., Asadzadeh, F. and Sani, I. K. 2020. Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use tor environmental pollutants from lake Urmia sediments. Journal of Inorganic and Organometallic Polymers and Materials 30(8): 3188-3198.
Priyadarshi, R., Kim, H. J. and Rhim, J. W. 2021. Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids 110: 106155.
Rao, K. M., Rao, K. K., Sudhakar, P., Rao, K. C. and Subha, M. C. S. 2013. Synthesis and characterization of biodegradable Poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. Journal of Applied Pharmaceutical Science 3(6): 061-069.
Savintsev, Y. P., Shevchenko, V. S. and Urakaev, F. Kh. 2005. Investigation of the composite materials on the basis of nanoparticles of sulfur. Journal of Crystal Growth 275: 2345- 2350. SPSS. 2013.Version 22. SPSS, Chicago, IL, USA. Suleiman, M., Al-Masri, M., Al Ali, A., Aref, D., Hussein, A., Saadeddin, I. and Warad, I. 2015. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. Journal of Materials and Environmental Science 6(2): 513-518. Vacacela Ajila, H. E., Oliveira, E. E., Lemos, F., Haddi, Kh., Colares, F., Marques Gonçalves, P. H., Venzon, M. and Pallini, A. 2019. Effects of lime sulfur on Neoseiulus californicus and Phytoseiulus macropilis, two naturallyoccurring enemies of the two-spotted spider mite Tetranychus urticae Pest Management Science 76(3): 996-1003. Van Leeuwen, T., Vontas, J. and Tsagkarakou, A. 2009. Mechanisms of acaricide resistance in the two spotted spider mite Tetranychus urticae. In: Ishaaya, I., Horowitz, A.R. (Eds.), Biorational Control of Arthropod Pests. Springer. The Netherlands, pp. 347-393. Wu, H., Wang, A., Yin, H., Zhang, D., Jiang, T., Zhang, U. and Liu, Y. 2008. Preparation of sulfur sheets by supersaturated solvent method in the presence of organic modifiers. Materials Letters 62: 1996-1998.
Ziaee, M. and Hamzavi, F. 2013. Application of nanoparticles in pest management programms-a review. International Conference on Green Agro-Industry (ICGAI),November 12-14, 2013, Yogyakarta, Indonesia, 386-393. | ||
آمار تعداد مشاهده مقاله: 910 تعداد دریافت فایل اصل مقاله: 617 |