تعداد نشریات | 31 |
تعداد شمارهها | 755 |
تعداد مقالات | 7,144 |
تعداد مشاهده مقاله | 10,301,882 |
تعداد دریافت فایل اصل مقاله | 6,921,219 |
A combined dictionary learning and TV model for image restoration with convergence analysis | ||
Journal of Mathematical Modeling | ||
دوره 9، شماره 1، فروردین 2021، صفحه 13-30 اصل مقاله (574.53 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2020.15408.1369 | ||
نویسندگان | ||
Souad Mohaoui* 1؛ Abdelilah Hakim2؛ Said Raghay2 | ||
1Department of mathematics, University of Cadi Ayad, Marrakesh, Morocco | ||
2Department of mathematics, University of Cadi Ayad, Marrakesh, Morocco | ||
چکیده | ||
We consider in this paper the $l_0$-norm based dictionary learning approach combined with total variation regularization for the image restoration problem. It is formulated as a nonconvex nonsmooth optimization problem. Despite that this image restoration model has been proposed in many works, it remains important to ensure that the considered minimization method satisfies the global convergence property, which is the main objective of this work. Therefore, we employ the proximal alternating linearized minimization method whereby we demonstrate the global convergence of the generated sequence to a critical point. The results of several experiments demonstrate the performance of the proposed algorithm for image restoration. | ||
کلیدواژهها | ||
Image deblurring؛ dictionary learning؛ sparse approximation؛ total variation؛ proximal methods؛ nonconvex optimization | ||
آمار تعداد مشاهده مقاله: 898 تعداد دریافت فایل اصل مقاله: 1,123 |