تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,073 |
تعداد مشاهده مقاله | 10,149,464 |
تعداد دریافت فایل اصل مقاله | 6,857,452 |
An ${\cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems | ||
Journal of Mathematical Modeling | ||
مقاله 2، دوره 6، شماره 1، مهر 2018، صفحه 27-46 اصل مقاله (236.32 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2018.2761 | ||
نویسندگان | ||
Shokofeh Sharifi1؛ Rashidinia Jalil* 2 | ||
1Department of Mathematics and statistics, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran | ||
چکیده | ||
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${\cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${\cal O}(h^{8})$ convergence analysis, mainly based on the Green's function approach, has been proved. Numerical illustration demonstrate the applicability of the purposed method. Three test problems have been solved and the computed results have been compared with the results obtained by recent existing methods to verify the accurate nature of our method. | ||
کلیدواژهها | ||
Nonlinear boundary value problems؛ eighth degree B-spline؛ collocation method؛ convergence Analysis؛ Green's function | ||
آمار تعداد مشاهده مقاله: 836 تعداد دریافت فایل اصل مقاله: 709 |