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Abstrat. As we know the approximation solution of seventh order two

points boundary value problems based on B-spline of degree eight has only

O(h

2

) auray and this approximation is non-optimal. In this work, we ob-

tain an optimal spline olloation method for solving the general nonlinear

seventh order two points boundary value problems. The O(h

8

) onver-

gene analysis, mainly based on the Green's funtion approah, has been

proved. Numerial illustration demonstrate the appliability of the pur-

posed method. Three test problems have been solved and the omputed

results have been ompared with the results obtained by reent existing

methods to verify the aurate nature of our method.

Keywords: Nonlinear boundary value problems, eighth degree B-spline, olloation

method, onvergene analysis, Green's funtion.
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1 Introdution

We onsider the general nonlinear seventh order two point boundary value

problems (BVPs) of the following form:

Ly � y

(7)

(x)� f(x; y(x); y

0

(x); : : : ; y

(6)

(x)) = 0; a � x � b; (1)

�
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with the boundary onditions,

By �

6

X

j=0

(�

ij

y

(j)

(a) + �

ij

y

(j)

(b)) = �

i

; 0 � i � 6; (2)

where �

ij

, �

ij

and �

i

are given real onstants, f is a ontinuous funtion,

y(x) is an unknown funtion, and L and B are di�erential operators.

The formulation of many mathematial models in engineering and other

branhes of sienes are in the form of di�erential equations with initial

or boundary onditions and boundary value problems generally. Obtaining

the analyti solution for these problems is impossible, beause of this, many

authors attempt to use di�erent numerial methods suh as �nite di�erene,

Galerkin and Sin olloation methods [12, 14, 15℄.

The literature on the numerial solution of seventh order two point

boundary value problems is seldom. These problems are generally arise in

modelling indution motors with two rator iruits. Behaviour of suh mod-

els have been studied by Rihards and Sarma [18℄. The solution of seventh

order BVPs based on variational iteration and di�erential transformation

method are given by Siddiqi et al. [21, 22℄. In [23℄ the authors used the

homotopy analysis method for solving higher order BVPs. Reproduting

kernel method for the solution of seventh order BVPs has been studied in

[3℄.

Many researhers applied the olloation methods for solution of BVPs

[2, 4, 19℄. The spline funtions has been applied to solve BVPs in [5℄, with

order O(h

2

). After that many authors [1, 7, 8, 20℄ examined the olloation

method based on ubi spline for BVPs.

An optimal ubi spline olloation method at grid points was developed

by Danial and Swatrz in [6℄, whih gives O(h

4

) auray. In [10℄ the authors

used optimal olloation method on midpoints based on quadrati spline

for approximate the solution of seond order BVPs. Irodotou-Ellina and

Houstis applied the optimal quinti spline olloation method for solving

linear fourth order two point BVPs whih lead to anO(h

6

) approximation[11℄.

In [16℄ Rashidinia et al. developed an optimal method based on sexti

spline at the grid points for solving of nonlinear �fth order two point BVPs.

Also, Rashidinia and Ghasemi [17℄ applied an optimal sexti spline at the

midpoints for the numerial solution of sixth order nonlinear two point

BVPs.

In this paper we applied optimal olloation method based on B-spline

of degree eight at the nodal points of the interval [a; b℄ and obtained O(h

8

)

approximation for the numerial solution of boundary value problems (1)�

(2). The approximation is assumed to satisfy a high order approximation
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of the problem. In Setion 2, we obtain the onsisteny relations for spline

of degree eight at the nodal points of the partition. In Setion 3, the

desription of the method based on spline for the solution of (1) � (2) is

explained. The onvergene analysis of the presented method is given in

detail, in Setion 4. In Setion 5, numerial experiments are onduted

to demonstrate the appliability of the proposed method omputationally.

Conlusion is presented in Setion 6.

2 Spline interpolation

We de�ne the spline of degree eight as basis funtions to onstrut an

interpolant S(x), satisfying ertain end onditions and then derive several

relations that are useful in the formulation of the optimal spline olloation

method.

Now let � � fa = x

0

< x

1

< � � � < x

n

= bg be a uniform partition of

the interval [a; b℄ with the step size h =

b�a

n

. We onsider smooth spline

of degree eight S(x), that is an element of Sp

8

(�) � fq(x)jq(x) 2 C

7

[a; b℄g

and q(x) is a polynomial of degree at most 8 on the partition �. The set

of B-splines fB

k

(x)g

k=n+4

k=�3

, form a basis for Sp

8

(�), so we an de�ne our

spline of degree eight in the following form:

S(x) =

n+4

X

k=�3



k

B

k

(x); x 2 [x

i

; x

i+1

℄;

that satis�es the following interpolatory onditions:

S(x

i

) = y(x

i

); 0 � i � n; (3)

assoiated with the end onditions:

S

(7)

(x

i

) = y

(7)

(x

i

)�

h

2

12

y

(9)

(x

i

) +

h

4

240

y

(11)

(x

i

)�

h

6

6048

y

(13)

(x

i

); (4)

for i = 0; 1; 2; 3; n � 2; n � 1; n. By using linear dependene relations, we

have the following onsisteny relations for spline of degree eight and its

�rst seventh derivatives for 4 � i � n� 3 at the grid points: [9, 24℄

(a) �S

(7)

i

=

40320

h

7

(�S

i�4;i+3

� 7S

i�3;i+2

� 21S

i�2;i+1

� 35S

i�1;i

);

(b) �S

(6)

i

=

20160

h

6

(S

i�4;i+3

� 5S

i�3;i+2

+ 9S

i�2;i+1

� 5S

i�1;i

);

() �S

(5)

i

=

6720

h

5

(�S

i�4;i+3

� S

i�3;i+2

� 9S

i�2;i+1

� 25S

i�1;i

);

(d) �S

(4)

i

=

1680

h

4

(S

i�4;i+3

+ 7S

i�3;i+2

� 27S

i�2;i+1

+ 19S

i�1;i

);
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(e) �S

(3)

i

=

336

h

3

(�S

i�4;i+3

� 23S

i�3;i+2

� 9S

i�2;i+1

� 95S

i�1;i

);

(f) �S

(2)

i

=

56

h

2

(S

i�4;i+3

+ 55S

i�3;i+2

+ 189S

i�2;i+1

� 245S

i�1;i

);

(g) �S

(1)

i

=

8

h

(�S

i�4;i+3

� 119S

i�3;i+2

� 1071S

i�2;i+1

� 1225S

i�1;i

);

(h) �g

i

= (g

i�4;i+3

+ 247g

i�3;i+2

+ 4293g

i�2;i+1

+ 15619g

i�1;i

); (5)

where the disrete operator � is de�ned for any funtion g on the inter-

val [a; b℄. For sake of onveniene we set S

i

� S(x

i

), S

j

i

� S

j

(x

i

), i =

0; 1; : : : ; n, j = 1; 2; : : : ; 7 where g

(j)

� D

(j)

g. In order to obtain the er-

ror bounds for spline of degree eight S and its derivatives S

0

; : : : ; S

(7)

, we

present the next theorem.

Theorem 1. Let S(x) be the spline of degree eight, satisfying (3)� (4) and

interpolating the funtion y 2 C

14

[a; b℄, then for i = 0; 1; : : : ; n the following

relations hold,

(a) S

(1)

i

= y

(1)

i

+O(h

8

);

(b) S

(2)

i

= y

(2)

i

+O(h

8

);

() S

(3)

i

= y

(3)

i

�

h

6

30240

y

(9)

i

+O(h

8

);

(d) S

(4)

i

= y

(4)

i

+

h

6

6048

y

(10)

i

+O(h

8

);

(e) S

(5)

i

= y

(5)

i

+

h

4

720

y

(9)

i

�

h

6

3024

y

(11)

i

+O(h

8

);

(f) S

(6)

i

= y

(6)

i

�

h

4

240

y

(10)

i

+

h

6

3024

y

(12)

i

+O(h

8

);

(g) S

(7)

i

= y

(7)

i

�

h

2

12

y

(9)

i

+

h

4

240

y

(11)

i

�

h

6

6048

y

(13)

i

+O(h

8

); (6)

and we have the following error bounds,

k (S � y)

(k)

k= O(h

9�k

); k = 1; 2; : : : ; 7: (7)

Proof. First we need to prove relation (6g). Using Taylor's series expansion

and taking into aount the interpolatory ondition S

i

= y

i

, i = 0; 1; : : : ; n,

in the relation (5a) we have

�S

(7)

i

= 40320y

(7)

i

� 20160hy

(8)

i

+ 16800h

2

y

(9)

i

� 6720h

3

y

(10)

i

+ 3192h

4

y

(11)

i

�1064h

5

y

(12)

i

+

1120

3

h

6

y

(13)

i

�

320

3

h

7

y

(14)

i

+O(h

8

); (8)
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for 4 � i � n�3. Further, using Taylor's series expansion, for any funtion

g 2 C

8

[a; b℄ we obtain

�g

i

= 40320g

i

� 20160hg

0

i

+ 20160h

2

g

(2)

i

� 8400h

3

g

(3)

i

+ 4704h

4

g

(4)

i

�1680h

5

g

(5)

i

+ 688h

6

g

(6)

i

� 215h

7

g

(7)

i

+O(h

8

); 4 � i � n� 3: (9)

Setting g(x) = y

(7)

i

�

h

2

12

y

(9)

i

+

h

4

240

y

(11)

i

�

h

6

6048

y

(13)

i

, we have the following

relation

�g

i

= �(y

(7)

i

�

h

2

12

y

(9)

i

+

h

4

240

y

(11)

i

�

h

6

6048

y

(13)

i

)

= 40320y

(7)

i

� 20160hy

(8)

i

+ 16800h

2

y

(9)

i

� 6720h

3

y

(10)

i

+ 3192h

4

y

(11)

i

= �1064h

5

y

(12)

i

+

1120

3

h

6

y

(13)

i

�

320

3

h

7

y

(14)

i

+O(h

8

): (10)

By subtrating Eq. (8) from (10), we obtain

�(S

(7)

i

�y

(7)

i

+

h

2

12

y

(9)

i

�

h

4

240

y

(11)

i

+

h

6

6048

y

(13)

i

) = O(h

8

); 4 � i � n�3: (11)

Denoting R

i

� S

(7)

i

�y

(7)

i

+

h

2

12

y

(9)

i

�

h

4

240

y

(11)

i

+

h

6

6048

y

(13)

i

, then by assoiating

the Eq. (4) and onsisteny equation (11), we get the following system of

equations,

�R

i

= O(h

8

) k y

(14)

k; 4 � i � n� 3;

R

0

= R

1

= R

2

= R

3

= R

n�2

= R

n�1

= R

n

= 0: (12)

Sine the oeÆient matrix of the above system is positive de�nite, it is

nonsingular and its inverse has a �nite norm. Thus we have R

i

= O(h

8

),

i = 0; 1; : : : ; n, this onludes the proof of relation (6g).

To prove relation (6b) onsider the following relations, whih an be

easily obtained via long straightforward alulations for any spline of degree

eight at the interior grid points x

i

,

S

(6)

i

=

�1

40320h

6

[�40320S

i;i+6

+ 241920S

i+1;i+5

� 604800S

i+2;i+4

+806400S

i+3

� h

7

(20159S

(7)

i

+ 40072S

(7)

i+1

+ 35779S

(7)

i+2

+ 20160S

(7)

i+3

+4541S

(7)

i+4

+ 248S

(7)

i+5

+ S

(7)

i+6

)℄; 0 � i � n� 6;
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and

S

(6)

i

=

�1

40320h

6

[�116081280S

i�7;i

� 812609280S

i�6;i�1

� 2437948800S

i�5;i�2

�4063449600S

i�4;i�3

+ h

7

(2879S

(7)

i�7

+ 711112S

(7)

i�6

+ 12359299S

(7)

i�5

+44962560S

(7)

i�4

+ 44946941S

(7)

i�3

+ 12323768S

(7)

i�2

+ 671041S

(7)

i�1

�17280S

(7)

i

)℄; 7 � i � n:

Using relation part (g) of Eq. (6) in the above relations and applying

Taylor's series expansion of y

(k)

i�l

for k = 0; 7; 9; 11 we get

S

(6)

i

= y

(6)

i

�

h

4

240

y

(10)

i

+

h

6

3024

y

(12)

i

+O(h

8

); 0 � i � n:

In a similar manner applying some appropriate onsisteny relations we

an prove the other relations in this Theorem.

To improve the order of numerial solution of the system of equations

(1)�(2) we need to donate the following disrete operators for onveniene:

�

0

g

i

= g

i�3;i+3

� 6g

i�2;i+2

+ 15g

i�1;i+2

� 20g

i

; 3 � i � n� 3

�

1

g

i

= �

1

6

[g

i�3;i+3

� 12g

i�2;i+2

+ 39g

i�1;i+1

� 56g

i

℄; 3 � i � n� 3

�

2

g

i

= �

1

12

[g

i�3;i+3

� 18g

i�2;i+2

+ 63g

i�1;i+1

� 92g

i

℄; 3 � i � n� 3

�

3

g

i

= g

i�1

� 2g

i

+ g

i+1

; 3 � i � n� 3;

These operators de�ne the relations of eight degree spline S with respet

to the higher derivatives y

(9)

; : : : ; y

(13)

.

Lemma 1. If y 2 C

14

[a; b℄, then using the above operators we have

y

(r)

i

=

�

0

S

(r�6)

i

h

6

+O(h

2

); 9 � r � 13; 3 � i � n� 3;

y

(r)

i

=

�

1

S

(r�4)

i

h

4

+O(h

4

); 9 � r � 10; 3 � i � n� 3;

y

(11)

i

=

�

2

S

(7)

i

h

4

+O(h

4

); 3 � i � n� 3;

y

(9)

i

=

�

3

S

(7)

i

h

2

+O(h

6

); 1 � i � n� 1:

Proof. The proof is state forward by using Lemma 2:1 and Theorem 2:1.
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Corollary 1. Let S be the spline of degree eight whih used to interpolate

y 2 C

14

[a; b℄ then for i = 3(1)n� 3, the following relations hold

y

(7)

i

= S

(7)

i

+

1

12

�

3

S

(7)

i

�

1

240

�

2

S

(7)

i

+

1

6048

�

0

S

(7)

i

+O(h

8

);

y

(6)

i

= S

(6)

i

+

1

240

�

1

S

(6)

i

�

1

3024

�

0

S

(6)

i

+O(h

8

);

y

(5)

i

= S

(5)

i

�

1

720

�

1

S

(5)

i

+

1

3024

�

0

S

(5)

i

+O(h

8

);

y

(4)

i

= S

(4)

i

�

1

6048

�

0

S

(4)

i

+O(h

8

);
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y

(3)

i

= S

(3)

i

+

1

30240

�

0

S

(3)

i

+O(h

8

);

y

(2)

i

= S

(2)

i

+O(h

8

);

y

(1)

i

= S

(1)

i

+O(h

8

):

Now we need to obtain the similar relations at the boundary and its

neighbour points, so that we onlude the following Corollary 2.

Corollary 2. Let y 2 C

14

[a; b℄, denoting the index �

j

= j, j = 0; 1; 2 for

the grid points, near the left end point and �

j

= n�j, j = n�2; n�1; n for

the grid points, near the right end point, then the following approximations

to the higher order derivatives of y hold at the boundary and its neighbour

points,

y

(r)

�

0

= �

1

(

20S

(r�4)

�

3

� 45S

(r�4)

�

4

+ 36S

(r�4)

�

5

� 10S

(r�4)

�

6

h

4

) +O(h

4

); r = 9; 10;

y

(r)

�

1

= �

1

(

10S

(r�4)

�

3

� 20S

(r�4)

�

4

+ 15S

(r�4)

�

5

� 4S

(r�4)

�

6

h

4

) +O(h

4

); r = 9; 10;

y

(r)

�

2

= �

1

(

4S

(r�4)

�

3

� 6S

(r�4)

�

4

+ 4S

(r�4)

�

5

� S

(r�4)

�

6

h

4

) +O(h

4

); r = 9; 10;

y

(9)

�

0

= �

3

(

6S

(7)

�

1

� 15S

(7)

�

2

+ 20S

(7)

�

3

� 15S

(7)

�

4

+ 6S

(7)

�

5

� S

(7)

�

6

h

2

) +O(h

6

);

y

(11)

�

0

= �

2

(

20S

(7)

�

3

� 45S

(7)

�

4

+ 36S

(7)

�

5

� 10S

(7)

�

6

h

4

) +O(h

4

);

y

(11)

�

1

= �

2

(

10S

(7)

�

3

� 20S

(7)

�

4

+ 15S

(7)

�

5

� 4S

(7)

�

6

h

4

) +O(h

4

);

y

(11)

�

2

= �

2

(

4S

(7)

�

3

� 6S

(7)

�

4

+ 4S

(7)

�

5

� S

(7)

�

6

h

4

) +O(h

4

);

y

(r)

�

0

= �

0

(

4S

(r�6)

�

3

� 3S

(r�6)

�

4

h

6

) +O(h

2

); r = 9; 10; 11; 12; 13;

y

(r)

�

1

= �

0

(

3S

(r�6)

�

3

� 2S

(r�6)

�

4

h

6

) +O(h

2

); r = 9; 10; 11; 12; 13;

y

(r)

�

2

= �

0

(

2S

(r�6)

�

3

� S

(r�6)

�

4

h

6

) +O(h

2

); r = 9; 10; 11; 12; 13:

3 Desription of the method

For solution of system of boundary value problems (1)�(2) by using S(x) 2

Sp

8

(�) and to ahieve an O(h

8

) optimal order method. We approximate
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y

0

; : : : ; y

(7)

by their spline relations, whih presribe in Theorem 1, Lemma

1 and Corollaries 1 and 2. Finally this approah lead to the following

nonlinear system:

S

(7)

�

0

+

�

3

12

(6S

(7)

�

1

� 15S

(7)

�

2

+ 20S

(7)

�

3

� 15S

(7)

�

4

+ 6S

(7)

�

5

� S

(7)

�

6

)

�

�

2

240

(20S

(7)

�

3

� 45S

(7)

�

4

+ 36S

(7)

�

5

� 10S

(7)

�

6

) +

�

0

6048

(4S

(7)

�

3

� 3S

(7)

�

4

)

= f(x

�

0

; S

�

0

; S

0

�

0

; S

00

�

0

; S

(3)

�

0

+

�

0

30240

(4S

(3)

�

3

� 3S

(3)

�

4

);

S

(4)

�

0

�

�

0

6048

(4S

(4)

�

3

� 3S

(4)

�

4

);

S

(5)

�

0

�

�

1

720

(20S

(5)

�

3

� 45S

(5)

�

4

+ 36S

(5)

�

5

� 10S

(5)

�

6

) +

�

0

3024

(4S

(5)

�

3

� 3S

(5)

�

4

);

S

(6)

�

0

+

�

1

240

(20S

(6)

�

3

� 45S

(6)

�

4

+ 36S

(6)

�

5

� 10S

(6)

�

6

)�

�

0

3024

(4S

(6)

�

3

� 3S

(6)

�

4

))

+O(h

8

); i = 0; n; (13)

S

(7)

�

1

+

�

3

12

S

(7)

�

1

�

�

2

240

(10S

(7)

�

3

� 20S

(7)

�

4

+ 15S

(7)

�

5

� 4S

(7)

�

6

)

+

�

0

6048

(3S

(7)

�

3

� 2S

(7)

�

4

) = f(x

�

1

; S

�

1

; S

0

�

1

; S

00

�

1

;

S

(3)

�

1

+

�

0

30240

(3S

(3)

�

3

� 2S

(3)

�

4

); S

(4)

�

1

�

�

0

6048

(3S

(4)

�

3

� 2S

(4)

�

4

);

S

(5)

�

1

�

�

1

720

(10S

(5)

�

3

� 20S

(5)

�

4

+ 15S

(5)

�

5

� 4S

(5)

�

6

) +

�

0

3024

(3S

(5)

�

3

� 2S

(5)

�

4

);

S

(6)

�

1

+

�

1

240

(10S

(6)

�

3

� 20S

(6)

�

4

+ 15S

(6)

�

5

� 4S

(6)

�

6

)�

�

0

3024

(3S

(6)

�

3

� 2S

(6)

�

4

))

+O(h

8

); i = 1; n� 1; (14)

S

(7)

�

2

+

�

3

12

S

(7)

�

2

�

�

2

240

(4S

(7)

�

3

� 6S

(7)

�

4

+ 4S

(7)

�

5

� S

(7)

�

6

) +

�

0

6048

(2S

(7)

�

3

� S

(7)

�

4

)

= f(x

�

2

; S

�

2

; S

0

�

2

; S

00

�

2

; S

(3)

�

2

+

�

0

30240

(2S

(3)

�

3

� S

(3)

�

4

);

S

(4)

�

2

�

�

0

6048

(2S

(4)

�

3

� S

(4)

�

4

);

S

(5)

�

2

�

�

1

720

(4S

(5)

�

3

� 6S

(5)

�

4

+ 4S

(5)

�

5

� S

(5)

�

6

) +

�

0

3024

(2S

(5)

�

3

� S

(5)

�

4

);

S

(6)

�

2

+

�

1

240

(4S

(6)

�

3

� 6S

(6)

�

4

+ 4S

(6)

�

5

� S

(6)

�

6

)�

�

0

3024

(2S

(6)

�

3

� S

(6)

�

4

))

+O(h

8

); i = 2; n� 2; (15)
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S

(7)

i

+

�

3

12

S

(7)

i

�

�

2

240

S

(7)

i

+

�

0

6048

S

(7)

i

= f(x

i

; S

i

; S

0

i

; S

00

i

; S

(3)

i

+

�

0

30240

S

(3)

i

;

S

(4)

i

�

�

0

6048

S

(4)

i

; S

(5)

i

�

�

1

720

S

(5)

i

+

�

0

3024

S

(5)

i

;

S

(6)

i

+

�

1

240

S

(6)

i

�

�

0

3024

S

(6)

i

) +O(h

8

); 3 � i � n� 3; (16)

assoiated with the boundary formulas,

BS � �

i;0

S

0

+ �

i;1

S

0

0

+ �

i;2

S

00

0

+ �

i;3

(S

(3)

0

+

�

0

30240

(4S

(3)

3

� 3S

(3)

4

))

+�

i;4

(S

(4)

0

�

�

0

6048

(4S

(4)

3

� 3S

(4)

4

))

+�

i;5

(S

(5)

0

�

�

1

720

(20S

(5)

�

3

� 45S

(5)

�

4

+ 36S

(5)

�

5

� 10S

(5)

�

6

)

+

�

0

3024

(4S

(5)

3

� 3S

(5)

4

))

+�

i;6

(S

(6)

0

+

�

1

240

(20S

(6)

�

3

� 45S

(6)

�

4

+ 36S

(6)

�

5

� 10S

(6)

�

6

)

�

�

0

3024

(4S

(6)

3

� 3S

(6)

4

)) + �

i;0

S

n

+ �

i;1

S

0

n

+ �

i;2

S

00

n

+�

i;3

(S

(3)

n

+

�

0

30240

(4S

(3)

n�3

� 3S

(3)

n�4

))

+�

i;4

(S

(4)

n

�

�

0

6048

(4S

(4)

n�3

� 3S

(4)

n�4

))

+�

i;5

(S

(5)

n

�

�

1

720

(20S

(5)

n�3

� 45S

(5)

n�4

+ 36S

(5)

n�5

� 10S

(5)

n�6

)

+

�

0

3024

(4S

(5)

n�3

� 3S

(5)

n�4

))

+�

i;6

(S

(6)

n

+

�

1

240

(20S

(6)

n�3

� 45S

(6)

n�4

+ 36S

(6)

n�5

� 10S

(6)

n�6

)

�

�

0

3024

(4S

(6)

n�3

� 3S

(6)

n�4

)) = �

i

; i = 0; 1; : : : ; 6: (17)

Let L

0

be the approximation of L de�ned as follows,

L

0

g

i

� g

(7)

i

+

1

12

�

3

g

(7)

i

�

1

240

�

2

g

(7)

i

+

1

6048

�

0

g

(7)

i

� f(x

i

; g

i

; g

0

i

; g

00

i

; g

(3)

i

+

1

30240

�

0

g

(3)

i

;

g

(4)

i

�

1

6048

�

0

g

(4)

i

; g

(5)

i

�

1

720

�

1

g

(5)

i

+

1

3024

�

0

g

(5)

i

;

g

(6)

i

+

1

240

�

1

g

(6)

i

�

1

3024

�

0

g

(6)

i

);
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and let B

0

be the approximation of B de�ned in (17), and S(x) be the

spline of degree eight whih is the solution of the system (1)� (2), then the

following relations hold,

8

<

:

L

0

S

i

= O(h

8

); 0 � i � n;

B

0

S = O(h

8

):

(18)

For the onvergene analysis �rst we need to reall and prove the following

Lemmas.

Lemma 2. If p = fp

ij

g is an m�m matrix and p

ii

�

P

m

j=1;i6=j

jp

ij

j+ � ,

for i = 1; 2; : : : ;m, where � > 0, then we have kp

�1

k

1

� �

�1

.

Proof. See Lemma 4 in [13℄.

Lemma 3. If the oeÆients matrix of S

(7)

i

in the equation L

0

S

i

= O(h

8

),

i = 0; 1; : : : ; n, is denoted by Q

7

, then Q

7

is nonsingular and kQ

�1

7

k

1

is

bounded.

Proof. Using relations (13) � (16) we an obtain the (n+ 1)� (n+ 1) o-

eÆients matrix Q

7

as

Q

7

=

1

60480

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

91180 �144855 327246 �466043 � � � 4482248 �291687 124918 �32853

5280 46000 26715 �52434 � � � 74077 �64992 35493 �11402

104 3272 58404 �12709 � � � 23054 �18771 9656 �2971

31 �438 6513 48268 � � � 6513 �438 31 0

0 31 �438 6513 � � � 48268 6513 �438 31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 31 �438 � � � 6513 48268 6513 �438

0 0 0 31 � � � �438 6513 48268 6513

�21 4625 �2971 9656 � � � �18771 23054 �12709 58404

�84 1827 �11402 35493 � � � �64992 74077 �52434 26715

�210 4536 �32853 124918 � � � �291687 4482248 �466043 327246

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

Let E

i

, be the i-th row of Q

7

. Then by using the following elementary row

operations, this matrix an be onverted to a stritly diagonally dominant:

E

2

+

1

2

E

3

�

1

4

E

4

+

1

4

E

5

! E

2

;

E

1

�

1

2

E

2

+E

3

� 1:4E

4

+ 1:35E

5

� 0:833E

6

+ 0:333E

7

! E

1

;

0:1E

0

+ 0:314E

1

� 0:847E

2

+ 1:61E

3

� 1:56E

4

+ 1:172E

5

�0:4859E

6

+ 0:1666E

7

+ 0:0407E

8

! E

0

;

E

n�2

+

1

2

E

n�3

�

1

4

E

n�4

+

1

4

E

n�5

! E

n�2

;
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E

n�1

�

1

2

E

n�2

+E

n�3

� 1:4E

n�4

+ 1:35E

n�5

� 0:833E

n�6

+0:333E

n�7

! E

n�1

;

0:1E

n

+ 0:314E

n�1

� 0:847E

n�2

+ 1:61E

n�3

� 1:56E

n�4

+ 1:172E

n�5

�0:4859E

n�6

+ 0:1666E

n�7

+ 0:0407E

n�8

! E

n

;

Hene, the matrix Q

7

is stritly diagonally dominant and positive de�nite.

Therefore, using Lemma 2 we an onlude that kQ

�1

7

k

1

is �nite.

4 Convergene analysis

We prove the onvergene of the presented method via Green's funtion

sheme. If we assume that the boundary value ondition y

(7)

= 0 subjeted

to homogeneous boundary onditions By = 0, has a unique solution, it

implies that there is a Green's funtion G(x; t) for this problem [19℄. Let

y

(7)

= � and

^

S

(7)

=  , be the exat and the spline solutions of the problem

(1) whih satisfy the boundary onditions (2). Then y(x) and

^

S(x) and its

�rst sixth derivatives an be obtained as follows:

y

(i)

(x) =

Z

b

a

�

i

G(x; t)

�x

i

�(t)dt;

^

S

(i)

(x) =

Z

b

a

�

i

G(x; t)

�x

i

 (t)dt;

for i = 0; 1; : : : ; 6. We de�ne the operators F

n

;M

n

;k and R as:

F

n

: C[a; b℄! R

n+1

, F

n

g = [g(x

0

); : : : ; g(x

n

)℄

T

,

M

n

: R

n+1

! C[a; b℄, via pieewise linear interpolation at fx

i

g

n

0

,

k : C[a; b℄! C[a; b℄, kg = f(x;G

p;0

(x); G

p;1

(x); : : : ; G

p;6

(x)),

R : C[a; b℄! C[a; b℄, Rg = f(x;Q

0

F

n

G

p;0

(x); : : : ; Q

6

F

n

G

p;6

(x)),

where g 2 C[a; b℄, G

p;i

(x) =

Z

b

a

�

i

G

p

(x; t)

�x

i

g(t)dt; i = 0; 1; : : : ; 6 and

Q

i

=

�

I

(n+1)�(n+1)

; 0 � i � 2;

The oeÆients matrix of S

(i)

in Eq: (18); 3 � i � 7:

With the introdued notations, we an rewrite Eqs. (1) and (13)-(16)

respetively as:

y

(7)

� f(x; y(x); y

0

(x); : : : ; y

(6)

(x)) = �� k� = (I � k)� = 0; (21)
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Q

7

F

n

^

S

(7)

� f(x;Q

0

F

n

^

S;Q

1

F

n

^

S

0

; : : : ; Q

6

F

n

^

S

(6)

) = Q

7

F

n

^

S

(7)

� F

n

R = 0:

Sine Q

7

is nonsingular and

^

S

(7)

(x) is a linear polynomial, therefore we

have the following relations:

F

n

^

S

(7)

�Q

�1

7

F

n

R = 0)M

n

F

n

^

S

(7)

�M

n

Q

�1

7

F

n

R = 0;

^

S

(7)

�M

n

Q

�1

7

F

n

R = (I �M

n

Q

�1

7

F

n

R) = (I � p

n

R) = 0; (22)

where p

n

=M

n

Q

�1

7

F

n

. Notie that p

n

is an operator from C[a; b℄ into the

ontinuous pieewise linear funtions with grid points x

i

.

Lemma 4. Let f�g be a sequene of partitions of the interval [a; b℄. Then

the sequene of operators p

n

=M

n

Q

�1

7

F

n

onverges to the identity operator

as h approahes zero.

Proof. We want to show that jp

n

g � gj ! 0 for eah g 2 C[a; b℄. To do so,

we have

kp

n

g � gk � kM

n

Q

�1

7

F

n

g �M

n

F

n

gk

� kM

n

kkQ

�1

7

kkF

n

g �Q

7

F

n

gk

� C

�

kF

n

g �Q

7

F

n

gk

� C

�

!(g; 10h);

where C

�

is a �nite onstant and !(g; �) = supfjg(x+�

0

)�g(x)j : x; x+�

0

2

[a; b℄; j�

0

j � �g. When h! 0 we have, !(g; 10h) ! 0.

Lemma 5. Let g 2 C[a; b℄, then p

n

R onverges to k.

Proof. By using the de�nitions of k and R we obtain

kp

n

Rg � kgk = kM

n

Q

�1

7

F

n

Rg � kgk

� kM

n

Q

�1

7

F

n

Rg �M

n

F

n

kgk + kM

n

F

n

kg � kgk

� kM

n

Q

�1

7

k kF

n

Rg �Q

7

F

n

Kgk +O(h

2

);

and sine kM

n

k and kQ

�1

7

k are bounded, we have

kp

n

Rg � kgk �

^

CkF

n

Rg �Q

7

F

n

Kgk �

^

C!(g; 10Æ);

with

Æ = maxf10h; !(G

p;0

(x); 17h); !(G

p;1

(x); 17h); : : : ; !(G

p;6

(x); 17h)g: (23)

!(G

p;j

(x); 17h), 0 � j � 6 onvergene to zero as h approahes zero for

ontinuous funtions G

p;j

(x); 0 � j � 6, so that by using Eq (23), Æ ! 0

and !(g; 10Æ) onvergene to zero.
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Now we present the main onvergene theorem.

Theorem 2. The error bounds for olloation approximation

^

S(x) 2 Sp

8

(�)

satis�es,

k(y �

^

S)

(j)

k = O(h

8�j

); j = 0; 1; : : : ; 7;

j(y �

^

S)

(j)

i

j = O(h

8

); j = 0; 1; 2;

j(y �

^

S)

(j)

i

j = O(h

6

); j = 3; 4;

j(y �

^

S)

(j)

i

j = O(h

4

); j = 5; 6;

j(y �

^

S)

(j)

i

j = O(h

2

); j = 7:

Proof. We onsider the problem: S

(7)

= �; BS = O(h

8

). Let f�g be a

sequene of partitions of the [a; b℄ and the problem y

(7)

= 0; By = 0 has a

unique solution. So there exists a polynomial �(x) of order 6 as follows

B� = BS = O(h

8

); k�

(k)

k = O(h

8

); k = 0; 1; : : : ; 6: (24)

From solvability of (S � �)

(7)

= �; B(S � �) = 0 we obtain

(I �M

n

Q

�1

7

F

n

R)(S

(7)

� �

(7)

) =M

n

Q

�1

7

(Q

7

F

n

� F

n

R)(S � �)

(7)

:

Using (18) and the boundedness of kM

n

k and kQ

�1

7

k, we have

(I �M

n

Q

�1

7

F

n

R)(S

(7)

� �

(7)

) =M

n

Q

�1

7

(O(h

8

)) = O(h

8

): (25)

Subtrating (22) and (25), we obtain,

(I �M

n

Q

�1

7

F

n

R)(S

(7)

� �

(7)

�

^

S

(7)

) = O(h

8

);

and we have

(S

(7)

� �

(7)

�

^

S

(7)

) = p

n

R(S

(7)

� �

(7)

�

^

S

(7)

) +O(h

8

): (26)

The operator R is ontinuously di�erentiable. So Eq. (26) has an integral

equation form as following

(S

(7)

� �

(7)

�

^

S

(7)

) = p

n

�

Z

1

0

(R

0

[

^

S

(7)

+ t(S

(7)

� �

(7)

�

^

S

(7)

)℄dt

�

�(S

(7)

� �

(7)

�

^

S

(7)

) +O(h

8

); (27)

where f�

n

g = p

n

�

Z

1

0

(R

0

[ + t(S

(7)

� �

(7)

�

^

S

(7)

)℄dt

�

, is a sequene of

linear operators onverging to R

0

(y

(7)

). So we have

(S

(7)

� �

(7)

�

^

S

(7)

) = �

n

(S

(7)

� �

(7)

�

^

S

(7)

) +O(h

8

):
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Sine (I � �

n

)

�1

exists and its norm is bounded, we obtain

k(S � � �

^

S)

(7)

k

1

= O(h

8

): (28)

Aording to the hypotheses of the problem, (S� ��

^

S)

(7)

= r; B(S� ��

^

S) = 0, has unique solution. So we an write (S� ��

^

S)

(i)

in the following

form

(S � � �

^

S)

(i)

=

Z

�

i

G(x; t)

�x

i

(S

(7)

� �

(7)

�

^

S

(7)

)(t)dt; i = 0; 1; : : : ; 6; (29)

whih implies that

k(S � � �

^

S)

(i)

k

1

= O(h

8

); i = 0; 1; : : : ; 6: (30)

Using the triangular inequality we obtain

k(y � S)

(i)

k � k(y �

^

S)

(i)

k+ k(S �

^

S)

(i)

k+ k�

(i)

k; i = 0; 1; : : : ; 6;

by using equations (18) and (24) and Theorem 1, we an obtain the results

of Theorem 2. This ompletes of proof.

5 Numerial experiments

We present the results from numerial experiments to demonstrate the

performane of the presented method and verify the results of the analysis.

The obtained results has been ompared with the referenes [21, 23, 3℄ and

the results tabulated in Tables 1{6, these results verify the aurate nature

of our purposed method in appliations. The numerial omputations have

done by the software Mathematia 10.

Example 1. The following linear seventh order boundary value problem

is onsidered:

y

(7)

(x) = xy(x) + e

x

(x

2

� 2x� 6); 0 � x � 1;

subjeted to the boundary onditions

y(0) = y(1) = 1; y

0

(0) = 0; y

0

(1) = �e;

y

00

(0) = �1; y

00

(1) = �2e; y

(3)

(0) = �2:

The exat solution of the problem is y(x) = (1 � x)e

x

. This example has

been solved by our method with h =

1

10

, the maximum absolute errors

in the ertain points are tabulated in Table 1 and ompared with [21, 23℄,
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whih shows that our method is aurate. Also the example has been solved

with h =

1

9

;

1

18

;

1

36

;

1

72

;

1

144

and the maximum absolute errors in the solutions

are tabulated in Table 2. In this table E

i

= ky

(i)

�

^

S)

(i)

k

1

; 0 � i � 6

and O

i

is the order of onvergene of i-th derivatives of y. This table also

veri�ed that our approah are appliable and aurate.

Table 1: The maximum absolute errors in the solution of Example 1.

x our method method in [23℄ method in [21℄

0:1 1:03(�15) 3:42(�13) 4:66(�13)

0:2 2:08(�15) 6:25(�14) 5:71(�12)

0:3 5:71(�14) 1:42(�13) 2:13(�11)

0:4 9:52(�14) 8:84(�14) 4:69(�11)

0:5 8:82(�14) 6:43(�14) 7:43(�11)

0:6 5:05(�13) 1:52(�12) 8:92(�11)

0:7 1:91(�13) 1:48(�12) 7:98(�11)

0:8 1:82(�13) 4:94(�12) 4:67(�11)

0:9 1:05(�13) 5:38(�12) 1:09(�11)

Table 2: The maximum absolute errors in the solution of Example 1 with

various values of h.

h

1

9

1

18

1

36

1

72

1

144

E

0

; O

0

1:5(�13);� 5:3(�16); 8:1 1:9(�18); 8:1 7:6(�21); 7:9 3:0(�23); 7:9

E

1

; O

1

5:6(�13);� 2:0(�15); 8:1 7:8(�18); 8 2:9(�20); 8:1 1:1(�22); 8

E

2

; O

2

4:2(�12);� 1:6(�14); 8 5:9(�17); 8:1 2:3(�19); 8 8:9(�22); 8

E

3

; O

3

8:9(�10);� 1:5(�11); 5:9 2:3(�13); 6 3:7(�15); 6 5:7(�17); 6

E

4

; O

4

5:0(�9);� 8:1(�11); 5:9 1:3(�12); 5:9 2:0(�14); 6 3:2(�16); 6

E

5

; O

5

3:1(�6);� 1:9(�7); 4 1:3(�8); 3:9 7:9(�10); 4 4:9(�11); 4

E

6

; O

6

1:0(�5);� 6:6(�7); 3:9 4:2(�8); 4 2:7(�9); 4 1:8(�10); 4

Example 2. Consider the following nonlinear seventh order boundary

value problem,

y

(7)

(x) = y

2

(x)e

x

; 0 � x � 1;

subjeted to the boundary onditions

y(0) = y

0

(0) = y

00

(0) = y

(3)

(0) = 1; y(1) = y

0

(1) = y

00

(1) = e:



An O(h

8

) optimal B-spline olloation for higher order BVPs 43

Table 3: The maximum absolute errors in the solution of Example 2.

h our method method in [3℄ method in [21℄

1

10

6:22(�15) 6:48(�11) 3:02(�14)

1

30

1:42(�18) 3:31(�14) ��

1

50

1:01(�19) 2:78(�15) ��

The exat solution of this problem is y(x) = e

x

. First of all we solve this

problem for various values of h =

1

10

;

1

30

;

1

50

and ompare with the results

in [21, 3℄. Our results are shown in Table 3. Then we obtain E

i

and O

i

for

various values of h. The results are tabulated in Table 4. This table shows

that the orders of onvergene in appliations agree with those we obtained

theoretially.

Table 4: The maximum absolute errors in the solution of Example 2 with

various values of h.

h

1

9

1

18

1

36

1

72

1

144

E

0

;O

0

1:5(�14);� 5:3(�17); 8:1 2:0(�19); 8 7:7(�22); 8 2:9(�24); 8:1

E

1

;O

1

5:9(�14);� 2:2(�16); 8:1 8:3(�19); 8:1 3:2(�21); 8 1:2(�23); 8:1

E

2

;O

2

4:3(�13);� 1:6(�15); 8:1 6:2(�18); 8 2:4(�20); 8 9:3(�23); 8

E

3

;O

3

1:0(�10);� 1:7(�12); 5:9 2:7(�14); 6 4:2(�16); 6 6:6(�18); 6

E

4

;O

4

5:2(�10);� 8:4(�12); 6 1:3(�13); 6 2:1(�15); 6 3:3(�17); 6

E

5

;O

5

3:6(�7);� 2:3(�8); 4 1:5(�9); 3:9 9:2(�11); 4 5:8(�12); 4

E

6

;O

6

1:1(�6);� 6:9(�8); 4 4:4(�9); 4 2:8(�10); 4 1:7(�11); 4

Example 3. Consider the following nonlinear seventh order boundary

value problem,

y

(7)

(x) + y

(4)

(x)� y(x)e

y(x)

= e

x

((�4(�3 + x)

+e

(�e

x

(x�1) osx)

(x� 1)) os x� 8(5 + x) sinx); 0 � x � 1;

subjeted to the boundary onditions

y(0) = 1; y

0

(0) = y(1) = 0; y

0

(1) = �e os 1;

y

00

(0) = y

(3)

(0) = �2; y

00

(1) = �2e os 1 + 2e sin 1:

The exat solution of the problem is given by y(x) = e

x

(1� x) os x: First

we solve this problem with h =

1

30

and ompared the errors in those speial
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points given in [3℄. These results are tabulated in Table 5, the results in

this table veri�ed that our method is more aurate. Then we obtain E

i

and O

i

for various values of h. The results are tabulated in Table 6.

Table 5: The maximum absolute errors in the solution of Example 3.

x our method method in [3℄

0:125 1:15(�12) 4:74(�10)

0:250 1:35(�10) 5:20(�9)

0:375 2:89(�9) 1:53(�8)

0:500 5:42(�9) 2:45(�8)

0:625 4:96(�9) 2:53(�8)

0:750 2:69(�9) 1:56(�8)

0:875 1:94(�10) 3:29(�9)

Table 6: The maximum absolute errors in the solution of Example 3 with

various values of h.

h

1

9

1

18

1

36

1

72

1

144

E

0

; O

0

3:8(�13);� 1:1(�15); 8:4 6:3(�18); 7:4 2:9(�20); 7:8 1:2(�22); 7:9

E

1

; O

1

4:6(�12);� 1:6(�14); 8:1 6:3(�17); 8 2:5(�19); 8 9:8(�22); 8

E

2

; O

2

1:7(�11);� 5:4(�14); 8:3 2:4(�16); 7:8 9:9(�19); 7:9 4:1(�21); 7:9

E

3

; O

3

1:2(�8);� 1:9(�10); 6 2:9(�12); 6 4:6(�14); 6 7:2(�16); 6

E

4

; O

4

3:9(�8);� 5:8(�10); 6:1 9:1(�12); 6 1:4(�13); 6 2:2(�15); 6

E

5

; O

5

4:1(�5);� 2:6(�6); 4 1:6(�7); 4 1:1(�8); 3:9 6:3(�10); 4:1

E

6

; O

6

7:7(�5);� 4:8(�6); 4 2:9(�7); 4 1:8(�8); 4 1:2(�9); 3:9

6 Conlusion

We developed a numerial method to solve the general nonlinear seventh

order boundary value problems by using eighth degree B-spline approxi-

mation. The numerial illustration shown the proposed method has the

O(h

8

) order of auray, so we an onlude that our method has highly

aurate and eÆient in omparison with the other existing methods. Our

results obtained by the optimal O(h

8

) method are in good agreement with

the proposed numerial algorithm.
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