تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,935 |
تعداد دریافت فایل اصل مقاله | 6,898,441 |
بررسی واکنش موتانتهای پیری در آرابیدوپسیس به پیشماده سنتز اتیلن (ACC) | ||
علوم و تحقیقات بذر ایران | ||
مقاله 6، دوره 3، شماره 2، تیر 1395، صفحه 67-80 اصل مقاله (1.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سارا رویان1؛ رضا شیرزادیان خرم آباد* 2؛ پیام طالبی کهدوئی3 | ||
1کارشناسارشد بیوتکنولوژی کشاورزی | ||
2استادیار، رشت، کیلومتر 5 جاده رشت-قزوین، دانشگاه گیلان، دانشکده کشاورزی، گروه بیوتکنولوژی کشاورزی | ||
3دانشجوی کارشناسی ارشد اصلاح نباتات، دانشگاه تربیت مدرس | ||
چکیده | ||
هورمون اتیلن بر بسیاری از فرایندهای فیزیولوژیکی از جمله پیری موثر است. پیری آخرین مرحله رشد و توسعه گیاه بوده که به مرگ گیاه ختم میشود. در مسیر بیوسنتز اتیلن آخرین پیش ماده 1-aminocyclopropane 1-carboxylic acid (ACC) است. گیاهچههای رشد یافته در محیط کشت حاوی ACCبا تبدیل این ماده به اتیلن دستخوش تغییرات خاصی از جمله کوتاهی و ضخیمشدن ریشه، کوتاهی هیپوکوتیل وچرخش رأس هیپوکوتیل می شوند که واکنش سه گانه (Triple response) نامیده میشود. وقوع این علایم نشاندهنده نرمال بودن فعالیتهای درک و بیوسنتز اتیلن در گیاه است. در این تحقیق واکنش موتانتهای old-3, old-9, old-14, etr1-3و ko-5 به غلظت های مختلف ACC با اندازهگیری صفات مرتبط با واکنش سه گانه در گیاه آرابیدوپسیس تالیانا بررسی شد. ژنهای OLD به عنوان ژن های موثر بر فرایند پیری در آرابیدپسیس شناخته میشوند. واکنش سه گانه در اغلب موتانتها با افزایش غلظت ACC مشاهده میشود. درحالیکه در موتانت etr1-3 هیچکدام از علائم واکنش سه گانه مشاهده نشد. لذا تغییر فعالیت ژنهای OLD9٬OLD3 و OLD14 در گیاهچههای موتانتهای old-3, old-9, old-14 باعث تغییر معنیداری در درک و بیوسنتز اتیلن نشده، ولی در گیاهچه های موتانت etr1-3 تغییر قابل توجهی در زمینه درک اتیلن توسط حسگرهای اتیلن رخ داده است. از آنجائیکه فرآیند پیری در موتانت های old-3, old-9, old-14سریعتر از گیاهان والدینی صورت گرفته، این بدان معنی است که ژنهای کنترلکننده فرآیند پیری از ژنهای موثر بر اتیلن متفاوت هستند. | ||
کلیدواژهها | ||
آرابیدپسیس؛ اتیلن؛ ریشه؛ موتانت؛ هیپوکوتیل | ||
مراجع | ||
Anne, E., Hall, B. and Bleeker, A.B. 2002. Analysis of combinatorial loss-of-function mutants in the arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell, 15: 2032–2041. (Journal) Chen, R., Binder, B.M., Garrett, W.M., Tucker, M.L., Cooper, B. and Chang, C. 2011. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular Biosystems, 7: 2637–2650. (Journal) Francisco, D.L., Torre, M., Del, C., Rodríguez-Gacio, A. and Matilla, J. 2006. How ethylene works in the reproductive organs of higher plants. Plant Signaling and Behavior, 1(5): 231-242. (Journal) Guzman, P. and Ecker, J.R. 1990. Exploiting the triple response of arabídopsís to identify ethylene related mutants. Plant Cell, 2: 513-523. (Journal) Guiboileau, A., Sormany, R., Meyer, C and Masclaux-Daubresse, C. 2010. Senescence and death of plant organs. Biologies, 333: 382-391. (Journal) Jing, H.C., Sturre, M.J.G., Hille, J. and Dijkwel, P.P. 2002. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant Journal, 32(1): 51-63. (Journal) Jing, H.C., Schippers, J.H.M., Hille, J. and Dijkwel, P.P. 2005. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany, 56: 2915–2923. (Journal) Ju, C.,Yoon, G.M., Shemansky, J.M., Lin, D.,Yin, I. and Chang, J. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleusin Arabidopsis. PNAS, Proceedings of the National Academy of Sciences. 109: 19486–19491. (Conference) Kim, H.J., Lim, P.O. and Nam, H.G. 2007. Molecular regulation of leaf senescence. In: Senescence processes in plants. Eds. Gan, S. Blackwell Publishing, Oxford, United Kingdom. pp. 231-255. (Book) Lim, P.O., Kim, H.J. and Nam, H.G. 2007. Leaf senescence. Annual Review of Plant Biology, 58: 115-136. (Book) Ma, B., Sui, M., Sun, H., Takada, K., Mori, H., Kamada, H. and Ezora, H. 2006. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiology, 141: 587–597. (Journal) Omalley, R.C., Rodriguez, F., Esch, J., Binder, B., ODonnel, P., Klee, H. and Bleecker, A. 2005. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and Tomato. Plant Journal, 41: 651–659. (Journal) Olmedo, G., Goue, H., Gregory, B., Nourizadeh, S., Aguilar- Henonin, L., Li, H., An, F., Guzman, P. and Ecker, J. 2006. Ethylen-insensisitive encodes a 5′→ 3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. PNAS, 36: 13286-13293. (Journal) Qu, X., Hall, B., Gao, Z. and Schaller, G.E. 2007. A strong constitutive ethylene response phenotype conferredon Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biology, 7: 3. (Journal) Shirzadian-Khorramabad, R., Jing, H.C., Hille, J. and Dijkwel, P.P. 2010. Identification of Arabidopsis stay-green mutants with a functional ethyleneresponse pathway. Agronomy Society of NewZealand Special Publication. Grassland Research and Practice. 14: 119-130. (Journal) Wang, K., Li, H. and Ecker, J. 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 15: 131-151. Wilson, R.L., Bakshi, A. and Binder, B.M. 2014. Loss of the ETR1 ethylene receptor reduces the inhibitory effect offar-red light and darkness on seed germination of Arabidopsisthaliana. Plant Science, 5: 1-13. (Journal) Zakarias, L. and Reid, M.S. 1990. Role of growth regulators in the senescence of Arabidobsis thaliana leaves. Physiologia Plantarum, 80: 549-554. (Journal) | ||
آمار تعداد مشاهده مقاله: 1,360 تعداد دریافت فایل اصل مقاله: 2,087 |