تعداد نشریات | 31 |
تعداد شمارهها | 757 |
تعداد مقالات | 7,162 |
تعداد مشاهده مقاله | 10,347,618 |
تعداد دریافت فایل اصل مقاله | 6,937,285 |
Line graphs associated to the maximal graph | ||
Journal of Algebra and Related Topics | ||
مقاله 1، دوره 3، شماره 1، شهریور 2015، صفحه 1-11 اصل مقاله (307.17 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
A. Sharma؛ A. Gaur* | ||
University of Delhi | ||
چکیده | ||
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $\Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphical properties of the line graph associated to $\Gamma(R)$, denoted by $(\Gamma(R))$ such that diameter, completeness, and Eulerian property. A complete characterization of rings is given for which $diam(L(\Gamma(R)))= diam(\Gamma(R))$ or $diam(L(\Gamma(R)))< diam(\Gamma(R))$ or $diam((\Gamma(R)))> diam(\Gamma(R))$. We have shown that the complement of the maximal graph $G(R)$, i.e., the comaximal graph is a Euler graph if and only if $R$ has odd cardinality. We also discuss the Eulerian property of the line graph associated to the comaximal graph. | ||
کلیدواژهها | ||
Maximal graph؛ line graph؛ eulerian graph؛ comaximal graph | ||
آمار تعداد مشاهده مقاله: 3,382 تعداد دریافت فایل اصل مقاله: 2,494 |