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LINE GRAPHS ASSOCIATED TO THE MAXIMAL
GRAPH

ARTI SHARMA AND ATUL GAUR ∗

Abstract. Let R be a commutative ring with identity. Let G(R)
denote the maximal graph associated to R, i.e., G(R) is a graph
with vertices as the elements of R, where two distinct vertices a and
b are adjacent if and only if there is a maximal ideal of R containing
both. Let Γ(R) denote the restriction of G(R) to non-unit elements
of R. In this paper we study the various graphical properties of the
line graph associated to Γ(R), denoted by L(Γ(R)) such that diam-
eter, completeness, and Eulerian property. A complete characteri-
zation of rings is given for which diam(L(Γ(R))) = diam(Γ(R)) or
diam(L(Γ(R))) < diam(Γ(R)) or diam(L(Γ(R))) > diam(Γ(R)).
We have shown that the complement of the maximal graph G(R),
i.e., the comaximal graph is a Euler graph if and only if R has odd
cardinality. We also discuss the Eulerian property of the line graph
associated to the comaximal graph.

1. Introduction

Let R be a commutative ring with unity. The maximal graph asso-
ciated to R, defined by authors in [5], as a simple graph whose vertices
are elements of R such that two distinct vertices a and b are adjacent
if and only if a, b ∈ m for some maximal ideal m of R. It is denoted
by G(R). Note that the comaximal graph [7] associated to R and the
maximal graph G(R) are complements of each other. In [6], the au-
thors defined Γ(R) as the restriction of G(R), whose vertices are the
non-unit elements of R, i.e., Γ(R) is a simple graph whose vertices are
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non-unit elements of R such that two distinct vertices a and b are ad-
jacent if and only if a, b ∈ m for some maximal ideal m of R. We shall
call both the graphs as the maximal graph associated to R.

In graph theory, the line graph of a given graph G, is denoted by
L(G) and is defined as a graph such that each vertex of L(G) repre-
sents an edge of G and any two vertices of L(G) are adjacent if and
only if their corresponding edges in G share a common vertex. One im-
portant theorem, due to Whitney in [8], about the line graphs is that
with one exceptional case, L(G) = K3, the structure of any connected
graph can be recovered from its line graph, i.e., there is a one-to-one
correspondence between the class of connected graphs and the class of
connected line graphs. With the class of maximal graphs at hand, it is
natural to keep an eye on the properties of their line graphs and seek
any relations between them. Recently, in [2], Chiang-hsieh et al studied
the line graphs associated to the zero-divisor graphs of commutative
rings. In this paper we study the line graphs associated to the maximal
graphs of R.

Given a simple graph G, we let V = V (G) denote its vertex set and
E = E(G) its edge set. The degree of v ∈ V , denoted by deg(v), is the
number of edges of G which are incident with v. Recall that a walk
in a graph G is a finite sequence of vertices u = v0, v1, . . . , vn = v and
edges a1, a2, . . . , an of G:

v0, a1, v1, a2, . . . , an, vn,

where the endpoints of ai are vi−1 and vi for each i. A walk is closed
when the first and last vertices, v0 and vn, are the same. A path is
a walk in which no vertex is repeated. The length of a path is the
number of edges in it. We say that G is connected if every pair of
distinct vertices u, v ∈ V (G) are joined by a path. The distance d(u, v)
between two distinct vertices u and v in G is the length of a shortest
path joining them, and d(u, u) = 0. The supremum of d(u, v) among
all pairs of u, v of V (G) is called the diameter of G and is denoted
by diam(G). A graph G is a complete graph if every vertex of G is
adjacent to every other vertex and a complete graph on n vertices is
denoted by Kn. A graph G with no edge is called an empty graph and
with no vertex is called a null graph. Let J(R) be the Jacobson radical
of R.

In section 2, we prove that diam(L(Γ(R))) < diam(Γ(R)) if and only
if eitherR ∼= Z4, R ∼= Z2[x]/(x2), orR ∼= Z2[x]/(x2−x); diam(L(Γ(R)))
= diam(Γ(R)) if and only if either R ∼= Z9, R ∼= Z3[x]/(x2), R ∼=
Z2 × F , where F is a field, or R ∼= Z2 × Z2 × Z2; for all other finite
rings, diam(L(Γ(R))) > diam(Γ(R)).
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In section 3, we prove that for any finite ring R ∼= R1×R2×· · ·×Rn,
if L(Γ(R)) is Eulerian, then one of the following holds:

(i) Each Ri has odd cardinality.

(ii) |J(R)| is even.

(iii) |J(R)| is odd and atleast two Ri’s have even cardinalities.

Converse also holds in the first two cases.
In section 4, we have shown that the complement of G(R), i.e., the

comaximal graph associated to R is Eulerian if and only if R has odd
cardinality. Also, we prove that L(G(R)′) is Eulerian if and only if R
has odd cardinality or R is a field with |R| = 2n, where n is an integer.

2. Diameter of L(Γ(R))

Throughout this section, we are assuming that R is not a field as the
line graph L(Γ(R)) of Γ(R), when R is a field, is just a null graph.

Before examining the diameter of L(Γ(G)), we first recall the follow-
ing result from [2], for a simple connected graph G.

Proposition 2.1. [2, Proposition 2.1] Let G be a simple connected
graph. Then diam(L(G)) 6 diam(G) + 1.

Note that for any ringR, diam(Γ(R)) ≤ 2. Therefore, diam(L(Γ(R)))
≤ 3. The following results may be known, but is given for the com-
pleteness.

Proposition 2.2. Let G be a connected graph. Then L(G) is a con-
nected graph.

Proof. Let [s, t], [u, v] ∈ V (L(G)) and P = {t = u0, u1, u2, . . . , un = u}
be a path in G from t to u. Put e0 = [s, t], en+1 = [u, v], and ei =
[ui−1, ui] for 1 ≤ i ≤ n. Then {e0, e1, . . . , en+1} is a path in L(G) from
e0 to en+1. Therefore, L(G) is connected. �

Remark 2.3. It is trivial to see that the line graph of K1,n is Kn for all
integers n ≥ 1. Therefore, if K1,n is a subgraph of a graph G, then Kn

is a subgraph of L(G).

Proposition 2.4. Let R be a ring. If Γ(R) is a star graph, then either
Γ(R) = K1,1 or Γ(R) = K1,2.

Proof. Assume Γ(R) = K1,n. Since R is not a field, we have |m| = 2
for every maximal ideal m in R. Now, if R has atleast three maximal
ideals, say m1, m2, and m3, then m1 ∩ m2 = {0} ⊂ m3 implies that
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either m1 ⊂ m3 or m2 ⊂ m3, which is a contradiction. Therefore, R has
atmost two maximal ideals of cardinality two. Now, if R has only one
maximal ideal of cardinality two, then Γ(R) = K1,1. Also, if R has two
maximal ideals of cardinality two, then Γ(R) = K1,2 with the central
vertex 0. �

In the next proposition, we enquire about the rings R for which
Γ(R) = K1,1 or K1,2.

Proposition 2.5. Let R be a ring. Then

(i) Γ(R) = K1,1 if and only if R is isomorphic to Z4 or Z2[x]/(x2).

(ii) Γ(R) = K1,2 if and only if R is isomorphic to Z2[x]/(x2 − x).

Proof. The sufficiency is obvious in both the cases. For necessity, note
that R is a finite ring with all maximal ideals of cardinality two. Now,
if x is any non-zero non-unit element in R, then Rx and annR(x)
are maximal ideals, and hence of cardinality two. Therefore, |R| =
|Rx||annR(x)| = 4. Now, if Γ(R) = K1,1, then R is a local ring of
cardinality 4, and hence R is isomorphic to either Z4 or Z2[x]/(x2).
Also, if Γ(R) = K1,2, then R is a ring with two maximal ideals, and is
of cardinality 4. Therefore, R is isomorphic to Z2[x]/(x2 − x). �

Corollary 2.6. Let R be a ring. Then Γ(R) is a star graph if and only
if R is isomorphic to either Z4, Z2[x]/(x2), or Z2[x]/(x2 − x).

Proof. This follows directly from Propositions 2.4 and 2.5. �

Theorem 2.7. Let R be a ring. Then diam(L(Γ(R))) < diam(Γ(R)) if
and only if R is isomorphic to either Z4, Z2[x]/(x2), or Z2[x]/(x2−x).

Proof. First, assume that diam(L(Γ(R))) < diam(Γ(R)). Since 0 <
diam(Γ(R)) ≤ 2, we have either diam(Γ(R)) = 1 or diam(Γ(R)) = 2.
If diam(Γ(R)) = 1, then diam(L(Γ(R))) = 0. Since Γ(R) is connected,
by Proposition 2.2, L(Γ(R)) is also connected. Therefore, L(Γ(R)) =
K1. This implies that Γ(R) = K2 = K1,1. Now, by Proposition 2.5,
R ∼= Z4 or R ∼= Z2[x]/(x2).

Now, suppose that diam(Γ(R)) = 2. This implies that diam(L(Γ(R)))
= 1 as if diam(L(Γ(R))) = 0, then Γ(R) = K1,1 which contradicts
that diam(Γ(R)) = 2. Therefore, L(Γ(R)) is a complete graph. Let
L(Γ(R)) = Kn, n 6= 3. Then Γ(R) is a star graph and hence by
Corollary 2.6, R ∼= Z2[x]/(x2 − x). Now if L(Γ(R)) = K3, then either
Γ(R) = K3 or Γ(R) = K1,3. If Γ(R) = K3, then diam(Γ(R)) = 1,
which is a contradiction. Also, by Proposition 2.4, Γ(R) 6= K1,3.
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Conversely, if R ∼= Z4 or R ∼= Z2[x]/(x2), then Γ(R) = K2, and
hence L(Γ(R)) = K1. Also, if R ∼= Z2[x]/(x2 − x), then Γ(R) =
K1,2, and hence L(Γ(R)) = K2. Therefore, in any case, we have
diam(L(Γ(R))) < diam(Γ(R)).

�

Proposition 2.8. Let R be a ring. Then

diam(L(Γ(R))) = diam(Γ(R)) = 1

if and only if either R ∼= Z9 or R ∼= Z3[x]/(x2).

Proof. First, assume that diam(L(Γ(R))) = diam(Γ(R)) = 1. This
implies that L(Γ(R)) and Γ(R) are both complete graphs, and hence
L(Γ(R)) = Γ(R) = K3. Therefore, R is a local ring with maximal ideal
m of cardinality three. Now, if x is any non-zero element in m, then
|Rx| = |annR(x)| = 3. This gives that |R| = |Rx||annR(x)| = 9 = 32.
Thus, by [3, p. 687], either R ∼= Z9 or R ∼= Z3[x]/(x2).

Conversely, assume that either R ∼= Z9 or R ∼= Z3[x]/(x2). Then
R is a local ring with maximal ideal of cardinality three. Therefore,
diam(L(Γ(R))) = diam(Γ(R)) = 1. �

Remark 2.9. (i) IfR is a finite ring with maximal ideals m1,m2, . . . ,mn,
then R ∼=

∏n
i=1Ri, where Ri is a finite local ring with maximal

ideal, say ni for all i. Also, |Ri| = pmiαi
i for some prime pi,

where mi is the length of Ri and |Ri/ni| = pαi
i for all i. Also, if

mi = R1 × · · · ×Ri−1 × ni ×Ri+1 × · · · ×Rn, then

|mi| = p
(mi−1)αi

i

n∏
j=1
j 6=i

p
mjαj

j = p−αi
i |R|

for all i and

|J(R)| = | ∩ni=1 mi| =
n∏
i=1

p
(mi−1)αi

i .

Therefore, if |mi| is even for some i, then the cardinality of ev-
ery maximal ideal in R is even except possibly one.

(ii) Note that the total number of units in R, i.e.,

|R \ ∪ni=1mi| =
n∏
i=1

p
(mi−1)αi

i (pαi
i − 1).

Therefore, R has odd number of units

if and only if
∏n

i=1 p
(mi−1)αi

i and
∏n

i=1 p
αi
i −1 are odd,

if and only if pi = 2 for all i and |J(R)| = 1,



6 SHARMA AND GAUR

if and only if R is reduced and |R| = 2k, where
k =

∑n
i=1 αi as for a finite ring R, the nilradical is same as the

Jacobson radical.
Also, for non reduced ring,

|mi \ ∪nj=1
j 6=i

mj| =
n∏
i=1

p
(mi−1)αi

i

n∏
j=1
j 6=i

(p
αj

j − 1) = |J(R)|.
n∏

j=1
j 6=i

(p
αj

j − 1) ≥ 2

for all i.

(iii) For a reduced ring R, if |mi \ ∪nj=1
j 6=i

mj| ≥ 2 for some i, then∏n
j=1
j 6=i

(p
αj

j − 1) ≥ 2, and hence p
αj

j − 1 ≥ 2 for atleast one j.

This implies that |mi \ ∪nj=1
j 6=i

mj| ≥ 2 for all i except possibly

when i = j.

(iv) For a reduced ring R, if |mi \ ∪nj=1
j 6=i

mj| = 1 for all i, then

pαi
i − 1 = 1 for all i. This implies that pi = 2 and αi = 1

for all i, and hence R ∼= Z2 × · · · × Z2(n times).

(v) For all m, 1 ≤ m ≤ n,

| ∩mi=1 mi \ ∪nj=m+1mj| =
n∏
i=1

p
(mi−1)αi

i

n∏
j=m+1

(p
αj

j − 1).

Theorem 2.10. Let R =
∏n

i=1Ri be a ring with Ri, ni,mi, pi,mi, αi as
in the Remark 2.9(i). Then

diam(L(Γ(R))) = diam(Γ(R)) = 2

if and only if either R ∼= Z2 × F , where F is any field other than Z2,
or R ∼= Z2 × Z2 × Z2.

Proof. The sufficiency is obvious. For necessity, suppose diam(L(Γ(R))) =
diam(Γ(R)) = 2. Then R is not a local ring. First assume that R has
two maximal ideals, say m1 and m2. If s, t ∈ m1\m2 and u, v ∈ m2\m1,
then [s, t]−[t, 0]−[0, u]−[u, v] is a shortest path between [s, t] and [u, v]
in L(Γ(R)), which is a contradiction. Therefore, we may assume that
|m1 \ m2| = 1. Thus, by Remark 2.9(ii), |J(R)| = 1, pα2

2 − 1 = 1, i.e.,
p2 = 2, α2 = 1. This implies that R1 is any field and R2

∼= Z2. Now, if
R1
∼= Z2, then R ∼= Z2×Z2

∼= Z2[x]/(x2−x), which is a contradiction,
by Theorem 2.7.
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Now, suppose that R has three maximal ideals, say m1, m2, and
m3. If |mi \ (mj ∪ mk)| ≥ 2 for some i, then |mi \ (mj ∪ mk)| ≥ 2 for
atleast two i, by Remark 2.9(iii). Therefore, by the same argument as
above, we will get a shortest path of length three in L(Γ(R)), which is
a contradiction. Thus we may assume that |mi \mj ∪mk| = 1 for all i.
This implies that R ∼= Z2 × Z2 × Z2, by Remark 2.9(iv).

Now, assume that R has n maximal ideals, say m1,m2, . . . ,mn, n ≥ 4.
By the same argument as above, we may assume that |mi\∪nj=1

j 6=i

mj| = 1

for all i. Choose s ∈ m1 \ ∪nj=2mj, t ∈ (m1 ∩ m2) \ ∪nj=3mj and u ∈
m3 \∪nj=1

j 6=3

mj, v ∈ (m3 ∩m4) \∪nj=1
j 6=3,4

mj. Then [s, t]− [t, 0]− [0, u]− [u, v]

is a shortest path between [s, t] and [u, v] in L(Γ(R)) of length 3, which
is a contradiction. �

Remark 2.11. We see that the inequality diam(L(Γ(R))) ≤ diam(Γ(R))+
1 is sharp for all the finite rings other than listed in Theorem 2.7, Propo-
sition 2.8, and Theorem 2.10, i.e., diam(Γ(R)) < diam(L(Γ(R))) for
all other finite rings. Therefore, for all finite non-local rings other than
listed in Theorems 2.7, 2.10, and Proposition 2.8, diam(L(Γ(R))) = 3.

Proposition 2.12. Let R be a ring. Then L(Γ(R)) is a complete graph
if and only if R is isomorphic to one of the following five rings:

Z4, Z2[x]/(x2), Z2[x]/(x2 − x), Z9, or Z3[x]/(x2).

In particular, L(Γ(R)) = Kn for n = 1, 2 or 3.

Proof. The sufficiency is obvious. For necessity, assume that L(Γ(R)) =
Kn, (n 6= 3) is a complete graph. Then Γ(R) is a star graph. Therefore,
R ∼= Z4, R ∼= Z2[x]/(x2), or R ∼= Z2[x]/(x2−x), by Corollary 2.6. Now,
let L(Γ(R)) = K3, then either Γ(R) = K3 or Γ(R) = K1,3. Since, by
Proposition 2.4, Γ(R) 6= K1,3, we conclude that Γ(R) = K3, and hence
|R| = 32, by Proposition 2.8. Therefore, by [3, p. 687], either R ∼= Z9

or R ∼= Z3[x]/(x2). �

3. Eulerian property of L(Γ(R))

We begin this section with the following definition of a Euler graph
from [4].

Definition 3.1. A closed walk running through every edge of the graph
G exactly once is called a Euler line and a graph G that contains a Euler
line is called a Euler graph.

From [4, Theorem 2.4], recall that a connected graph G is Eulerian
if and only if all the vertices of G are of even degree. We conclude that
if G is Eulerian, then so is L(G) as deg([u, v]) = deg(u)+deg(v)−2 for
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any [u, v] ∈ V (L(G)). In this section we shall discuss, when the line
graph of Γ(R) is Eulerian.

The following lemma has been proved in [2] for zero-divisor graphs.
Exactly the same proof will work for maximal graph, i.e., for Γ(R).

Lemma 3.2. Let R be a finite ring. Then L(Γ(R)) is Eulerian if and
only if deg(v) is even for all v ∈ V (Γ(R)) or deg(v) is odd for all
v ∈ V (Γ(R)).

Proof. The proof follows from [2, Lemma 4.1]. �

Proposition 3.3. Let (R,m) be a finite local ring. Then L(Γ(R)) is
Eulerian.

Proof. Since (R,m) is a finite local ring, we have deg(v) = |m| − 1 for
all v ∈ V (Γ(R)) and hence result follows by Lemma 3.2. �

Theorem 3.4. Let R =
∏n

i=1Ri be a ring with Ri, ni,mi, pi,mi, αi as
in the Remark 2.9(i). If L(Γ(R)) is Eulerian, then exactly one of the
following holds:

(i) Each Ri has odd cardinality.

(ii) |J(R)| is even.

(iii) |J(R)| is odd and atleast two Ri’s have even cardinalities.

Converse also holds in the first two cases.

Proof. First, suppose that L(Γ(R)) is Eulerian. By Lemma 3.2, this
implies that either deg(v) is even for all v ∈ V (Γ(R)) or deg(v) is
odd for all v ∈ V (Γ(R)). Let deg(v) be even for all v ∈ V (Γ(R)).
Choose vi ∈ mi \ ∪nj=1

j 6=i

mj for all i. Then, by [6, Lemma 2.2], deg(vi) =

|mi|−1. This implies that every maximal ideal ofR is of odd cardinality.
Therefore, R has odd cardinality, by [6, Proposition 2.4], and hence
each Ri has odd cardinality.

Now suppose that deg(v) is odd for all v ∈ V (Γ(R)). By the same
argument as above, we conclude that every maximal ideal of R has
even cardinality. It follows that R has even cardinality, by [6, Propo-
sition 2.4]. Thus atleast one Ri has even cardinality. If |J(R)| is even,
then nothing to prove. Now, assume that |J(R)| is odd. Suppose that
there is exactly one Ri, say Ri0 , of even cardinality. Now, if |J(R)| = 1,
then by Remark 2.9(i), |mi0| is odd, a contradiction. Also, if |J(R)| 6= 1,
then Ri0 is a field, and hence |mi0| is odd, again a contradiction.

Conversely, suppose that Ri has odd cardinality for all i. Then R has
odd cardinality. By [6, Theorem 2.6], it follows that Γ(R) is Eulerian.
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Therefore, L(Γ(R)) is Eulerian. Now, assume that |J(R)| is even. Then
|mi| is even for all i. Therefore, | ∪rk=1 mik | is even for any maximal
ideals mi1 , . . . ,mir , since |J(R)| divides every term in the expansion of
| ∪rk=1 mik |. This implies that deg(v) is odd for any v ∈ V (Γ(R)), by
[6, Lemma 2.2]. Now, the result follows by Lemma 3.2. �

In the above theorem, converse may not be true in the third case as
we have the following example:

Example 3.5. Consider R = Z2 × Z2 × Z2. Then R is a reduced
ring with three maximal ideals, say, m1,m2, and m3, and |m1| = |m2| =
|m3| = 4. Also, |m1∪m2∪m3| = 7; so that deg(0) = |m1∪m2∪m3|−1 =
6, which is even. Now, if we choose any v ∈ m1 \ (m2 ∪ m3), then
deg(v) = |m1|−1 = 3, which is odd. Therefore, by Lemma 3.2, L(Γ(R))
cannot be Eulerian.

4. Eulerian property of comaximal graph

Throughout this section, we are assuming that R is a finite ring with
maximal ideals m1,m2, . . . ,mn. We begin this section with the following
definition.

Definition 4.1. The complement G′ of a graph G is a graph with the
same vertex set as G, with the property that two vertices are adjacent
in G′ if and only if they are not adjacent in G.

Throughout this section, we will denote the maximal graph associ-
ated to R as G(R). Observe that the complement of a maximal graph
G(R) is nothing but the comaximal graph associated to R defined in
[7] and vice versa.

Lemma 4.2. Let R be a ring and a ∈ V (G(R)′). Then the following
holds.

(i) If a is unit in R, then deg(a) = |R| − 1.

(ii) Let a be non-unit of R and {m | m is a maximal ideal of R and a ∈
m} = {m1, . . . ,mk}. Then deg(a) = |U(R)| + | ∪ni=k+1 mi \
∪kj=1mj|, where U(R) is the set of all units in R. In particular,
deg(a) = |U(R)| for any a ∈ J(R).

Proof. For (i), since a is unit in R, it is an isolated vertex in G(R).
Therefore, deg(a) = |R| − 1 in G(R)′.

We now prove (ii). Note that deg(a) = | ∪ki=1 mi| − 1 in G(R), by [6,
Lemma 2.2]. Therefore, in G(R)′,

deg(a) = |R| − | ∪ki=1 mi| = |U(R)|+ | ∪ni=k+1 mi \ ∪kj=1mj|.
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�

Theorem 4.3. Let R be a ring. Then the comaximal graph G(R)′ is
Eulerian if and only if R has odd cardinality.

Proof. First, assume that G(R)′ is Eulerian. Then, by [4, Theorem 2.4],
deg(1) is even and hence by Lemma 4.2, |R| = deg(1) + 1, is odd.

Conversely, suppose that R has odd cardinality. Then |mi| is odd for
all i, and hence |U(R)| is even, by Remark 2.9(i). Let a be a unit in
R. Then, by Lemma 4.2(i) deg(a) is even. Now let a be a non-unit in
R, and {m | m is a maximal ideal of R and a ∈ m} = {n1, n2, . . . , nk}.
Then, by Lemma 4.2(ii),

d(a) = |U(R)|+|∪ni=k+1ni\∪kj=1nj| = |U(R)|+|∪ni=k+1ni|−|∪
n, k
i=k+1,j=1ni∩nj|.

As | ∪ni=k+1 ni| and | ∪n, ki=k+1,j=1 (ni∩nj)| are odd as every maximal ideal
is of odd cardinality and number of terms after expansion is odd. Thus
deg(a) is even for all a ∈ R. Therefore, G(R)′ is Eulerian. �

Theorem 4.4. Let R be a ring. Then L(G(R)′) is Eulerian if and only
if either R has odd cardinality or R is a field with |R| = 2n, where n is
an integer.

Proof. First, suppose that L(G(R)′) is Eulerian. Then, by Lemma
3.2, deg(a) is even for all a ∈ V (G(R)′) or deg(a) is odd for all
a ∈ V (G(R)′). If deg(a) is even for all a ∈ V (G(R)′), then G(R)′

is Eulerian, by [4, Theorem 2.4]. Therefore, by Theorem 4.3, R has
odd cardinality. Now, assume that deg(a) is odd for all a ∈ V (G(R)′).
Then, by Lemma 4.2(ii), |U(R)| is odd. This implies that R is reduced
and |R| = 2n, by Remark 2.9(ii). We assert that (0) is the maximal
ideal in R. If not, then every maximal ideal in R is of even cardinal-
ity, and hence | ∪ni=1 mi| is even. But this is a contradiction since, by
Lemma 4.2(i), | ∪ni=1 mi| = deg(a) + 1 − |U(R)| for any unit a ∈ R.
Therefore, (0) is the maximal ideal in R, and hence R is a field, by [1,
Proposition 1.2].

Conversely, if R has odd cardinality, then by Theorem 4.3, G(R)′ is
Eulerian, and hence L(G(R)′) is Eulerian. Now, assume that R is a field
with |R| = 2n. Then G(R) is an empty graph, and hence G(R)′ = K2n ,
a complete graph with 2n vertices. This implies that all the vertices in
G(R)′ are of the same degree. Therefore, by Lemma 3.2, L(G(R)′) is
Eulerian. �
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