| تعداد نشریات | 32 |
| تعداد شمارهها | 819 |
| تعداد مقالات | 7,946 |
| تعداد مشاهده مقاله | 40,890,844 |
| تعداد دریافت فایل اصل مقاله | 8,465,860 |
Mittag-Leffler wavelet-based numerical method for fractional pantograph delay differential equations | ||
| Journal of Mathematical Modeling | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 07 آذر 1404 اصل مقاله (482.67 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2025.31321.2807 | ||
| نویسندگان | ||
| Arezoo Ghasempour1؛ Yadollah Ordokhani* 1؛ Mohsen Razzaghi2 | ||
| 1Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran | ||
| 2Department of Mathematics and Statistics, Mississippi State University, MS, USA | ||
| چکیده | ||
| This paper proposes a robust numerical framework for solving fractional pantograph delay differential equations. The approach leverages the Riemann–Liouville fractional integral operator, represented through Mittag-Leffler wavelet functions within a collocation-based scheme. To facilitate computation, an operational matrix is constructed, enabling the transformation of the fractional differential system into a system of algebraic equations. The proposed method’s accuracy, stability, and convergence are rigorously validated through comprehensive numerical experiments. | ||
| کلیدواژهها | ||
| Fractional pantograph differential equations؛ Mittag-Leffler wavelets؛ operational matrix | ||
|
آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 15 |
||