| تعداد نشریات | 32 |
| تعداد شمارهها | 816 |
| تعداد مقالات | 7,898 |
| تعداد مشاهده مقاله | 37,358,919 |
| تعداد دریافت فایل اصل مقاله | 8,358,776 |
On a best proximity point theorems for (α,d_G)-regular contractive type mappings in G-metric spaces | ||
| Computational Sciences and Engineering | ||
| دوره 4، شماره 2، آذر 2024، صفحه 309-318 اصل مقاله (360.75 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22124/cse.2024.26472.1071 | ||
| نویسندگان | ||
| Sami H. Jasem؛ Sayyed Hashem Rasouli؛ Azizollah Babakhani* | ||
| Department of Mathematics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran | ||
| چکیده | ||
| We consider the G-metric space with including the P-property which are introduced by Z. Mustafa and B. Sims (Nonlinear Convex Anal. 7 (2006) 289-297) and presented by B. Samet and et al. in a metric space (Nonlinear Anal. 4 (75) (2012) 2154-2165) respectively. In the present work we define P-property in a G-metric space and proved that under which various conditions there exist a best proximity point for non-self-mapping in G-metric space. Also, we introduced for a certain such mappings which its best proximity point is unique under further conditions. | ||
| کلیدواژهها | ||
| Best proximity point؛ α-ψ-proximal contractive؛ G-metric space | ||
| مراجع | ||
|
[1] Abkar, A., & Gabeleh, M. (2011). Best proximity points for cyclic mappings in ordered metric spaces. Journal of Optimization Theory and Applications, 150(1), 188-193.
[2]Al-Thagafi, M. A., & Shahzad, N. (2009). Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Analysis: Theory, Methods & Applications, 70(3), 1209-1216.
[3]Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671.
[4]Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta mathematicae, 3(1), 133-181.
[5]De la Sen, M., & Ibeas, A. (2013). Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with some applications. Applied Mathematics and Computation, 219(10), 5410-5426.
[6]Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794.
[7]Eldred, A. A., & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006.
[8]Fan, K. (1969). Extensions of two fixed point theorems of FE Browder. Mathematische zeitschrift, 112(3), 234-240.
[9]Raji, M., Rajpoot, A. K., Al-omeri, W. F., Rathour, L., Mishra, L. N., & Mishra, V. N. (2012). Generalized𝜶-𝝍 Contractive Type Mappings and Related Fixed Point Theorems with Applications. Tuijin Jishu/Journal of Propulsion Technology, 45(10), 2024.
[10] Kirk, W. A., Srinivasan, P. S., & Veeramani, P. (2003). Fixed points for mappings satisfying cyclical contractive conditions. Fixed point theory, 4(1), 79-89.
[11] Lakshmikantham, V., & Ćirić, L. (2009). Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(12), 4341-4349.
[12] Prolla, João B. "Fixed-point theorems for set-valued mappings and existence of best approximants." Numerical Functional Analysis and Optimization 5.4 (1983): 449-455.
[13] Reich, S. (1978). Approximate selections, best approximations, fixed points, and invariant sets. Journal of Mathematical Analysis and Applications, 62(1), 104-113.
[14] Sadiq Basha, S. (2010). Extensions of Banach's contraction principle. Numerical Functional Analysis and Optimization, 31(5), 569-576.
[15] Basha, S. S. (2011). Best proximity point theorems generalizing the contraction principle. Nonlinear Analysis: Theory, Methods & Applications, 74(17), 5844-5850.
[16] Basha, S. S. (2012). Best proximity point theorems: an exploration of a common solution to approximation and optimization problems. Applied Mathematics and Computation, 218(19), 9773-9780.
[17] Samet, B., & Turinici, M. (2012). Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications.
[18] Samet, B., Vetro, C., & Vetro, P. (2012). Fixed point theorems for α–ψ-contractive type mappings. Nonlinear analysis: theory, methods & applications, 75(4), 2154-2165.
[19] Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces. Journal of Nonlinear and convex Analysis, 7(2), 289.
[20] Jleli, M., & Samet, B. (2013). Best proximity points for α–ψ-proximal contractive type mappings and applications. Bulletin des Sciences Mathématiques, 137(8), 977-995.
[21] Hussain, N., Latif, A., & Salimi, P. (2014). Best Proximity Point Results in G‐Metric Spaces. In Abstract and Applied Analysis (Vol. 2014, No. 1, p. 837943). Hindawi Publishing Corporation. | ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 4 |
||