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1. Introduction

Let A and B be two nonempty subsets of a metric space (X,d). An element x € A is said to be a
fixed point of a given map T:A — B if T(x) = x. Clearly, T(A) n A # @ is a necessary (but
not sufficient) condition for the existence of a fixed point of T. If T(A) N A = @, then
d(x,T(x)) > 0 forall x € A, that is, the set of fixed points of T is empty. In a such situation,
one often attempts to find an element x which is in some sense closest to T(x). Best approximation
theory and best proximity point analysis have been developed in this direction.

Anelement a € A is called a best approximate point of T if
d(a,T(a)) =inf{d(T(a),x) : x € A}
Anelement a € Ais called a best proximity point of T if

d(a,T(a)) = d(A,B)
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where
d(A,B) = inf{d(x,y):x € A,y € B}

Because of the fact that d(x, T(x)) = d(A,B) forall x € A, the global minimum of the mapping
x — d(x,T(x)) is attained at a best proximity point. Clearly, if the underlying mapping is a self-
mapping, then it can be observed that a best proximity point is essentially a fixed point. The goal
of best proximity point theory is to furnish sufficient conditions that assure the existence of such
points. For more details on this approach, we refer the reader to De la Sen and Ibeas [5], Di Bari,
Suzuki and Vetro [6], Suzuki, Eldred and P Veeramani [7], Al-Thagafi and Shahzad [2,3], Sadiq
Basha [14,16], and Abkar and Gabeleh [1].

First, we recollect some necessary definitions and results in this direction. The notion of G-metric
spaces is defined as follows.

Definition 1. [19] Let X be a non-empty set, G:X x X x X — R be a function satisfying the
following properties:

(Gl G(x,y,z) = 0ifx =y = z

(G2)0 < G(x,x,y) forallx,y € Xwithx # Y,

(G3)G(x,x,y) < G(x,y,2) forallx,y,z € Xwithy # z,

(G4) G(x,y,2) = G(x,2,y) = G(y,z,x) =--- (Symmetry in all three variables),
(G5 G(x,y,2) < G(x,a,a) + G(a,y,z) forall x,y,z,a € X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the
pair (X, G) is called a G-metric space.

It should be noted that every G-metric on X induces a metric d; on X defined by
de(x,y) = G(x,y,y) + G(y,x,x),forallx,y € X.

Definition 2. [19] Let (X, G) be a G-metric space, and let (x,,) be a sequence of points of X. We
say that (x,) is G-convergentto x € X if

lim G(x,x,,x,) =0
n,m—oo

that is, for anye > 0, there exists N € Nsuch that G(x, x,,, x,,) < €, foralln,m > N.We call x
the limit of the sequence and write x,, » x or lim x,, = «x.

Proposition 1. [19] Let (X, G) be a G-metric space. The following are equivalent:
(i) (x;,) is G — convergent to x,

(i) G(xp, xp,x) = Oasn — +oo,

(iii) G(xp, x,x) » 0asn - +oo,

(iv) G(xp, X, x) = 0asn,m — +oo.
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Definition 3. [19] Let (X,G) be a G — metric space. A sequence (x,) is called a G — Cauchy
sequence if, for any € > 0, there exists N € N such that G (x,, x,,,, x;) < € forall

m,n,l > N,thatis, G(x,, X;,,x;) > 0asn,m,l - +oo.

Proposition 2. [19] Let (X,G) be a G—metric space. Then the following statements are
equivalent:

(i) The sequence (x,,) is G-Cauchy,
(ii) Forany e > 0, there exists N € N such that G(x,, X;,, xm) < €, forallm,n = N.

Proposition 3. [19] Let (X, G) be a G-metric space. A mapping f: X — X is G — continuous
at

x € X if and only if it is G — sequentially continuous at X, that is, whenever (x,is G-
convergent to x, (f(x,)) is G — convergent to f(x).

Proposition 4. [19] Let (X,G) be a G-metric space. Then, the function G(x,y,z) is jointly
continuous in all three of its variables.

Proposition 5. [19] Let (X, G) be a G-metric space, then for any x,y,z,a € X it follows:
M)IfG(x,y,z) = Othenx = y = z,

(i) G(x,y,z) < G(x,x,¥) + G(x,x,2),

(i) G(x,y,¥) < 2G(y,x,x),

(iv)G(x,y,2) < G(x,a,z) + G(a,y,z).

Definition 4. [19] A G-metric space (X, G) is called G-complete if every G — Cauchy sequence
is G-convergent in (X, G)

Definition 5. [19] Let (X,G) be a G-metric space. A mapping F:X X X — Xis said to be
continuous if for any two G — convergent sequences (x,) and (y,) converging to x and y
respectively, {F(x,, y»)} is G-convergent to F(x, y).

Samet, Vetro and Vetro [18] introduced a new class of contractive mappings called a — ¢ —
contractive type mappings. Let (X,d) be a metric space. Let ¥ be the set of nondecreasing

functions ¢ : [0,00) — [0, o) such that Z:;l Y™ (t) < oo foreach t > 0, where Y™ is the
n-th iterate of Y.

Definition 6. [10] A self-mapping T: X — X is said to be an a-y-contraction, where
a:X X X - [0,0)andyp € Y, if

a(x,y)d(Tx,Ty) < Y(d(x,y)), forallx,y € X.
Definition 7. [10] A self-mapping T: X — X is said to be a-admissible, where
a:A X A - [0,c0)andyp € W, if

x,y € X,a(x,y) =2 1 = a(Tx,Ty) = 1.
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In [19] Jleli and Samet used following notions:
d(A,B):= inf {d(a,b):a € A, b € B},

Ay:= {a € A:d(a,b) = d(A,B),for some b € B},

Bo:= {b € B:d(a,b) = d(A,B),for somea € A}.
Definition 8. Anelement x* € A is said to be a best proximity point of the non-self-mapping
T: A — B ifitsatisfies the condition that

d(x*,T(x")) = d(4,B).

Definition 9. [18] Let (4, B) be a pair of nonempty subsets of a metric space (X, d) with
A, # @.Then the pair (4, B) is said to have the P — property if and only if :
Ifd(xq,y1) = d(4,B) and d(x,,y,) = d(A,B) thend(xi,x;) = d(y1,Y>),
where x,,x, € Aandy;,y, € B.

Definition 10. [18] Let T:A — B and a: A X A — [0,0). We say that T is a — proximal
admissible if:

a(xq,x,) = landd(uy, T(xy)) = d(A4,B) and d(u,, T(x,)) = d(4,B)
then a(uy,uy) = 1,
for all x4, x,, uy,u, € A.

Definition 11. [18] A non-self-mapping T: A — B is said to be an a-y-proximal contraction,
wherea:A X A - [0,0)and ¢ € ¥, if

a(x,y) d(T(x), T(y)) < Y(d(xy)) forallx,y € A

Let (X,G) be a G-metric space. Suppose that A and B are nonempty subsets of a G — metric
space (X, G). Hussain, Latif and Salimi in [20] defined the following sets:

Ap:= {x € A:ds(x,y) = d;(A B),forsomey € B}
By := {y € B:d;(x,y) = d;(A B),forsomex € A}
where d;(4,B) = inf{dg(x,y):x € A,y € B}.

Definition 12. Let (X, G) be a G — metric space and let A and B be two nonempty subsets of X.
Then B is said to be approximatively compact with respect to A if every sequence {y,} in B,
satisfying the condition d; (x,y,) — d;(x, B) forsome x € A, has a convergent subsequence.

2. Main results

The first result of this section is under which conditions there exist a best proximity point for non-
self-mapping T in G — metric space.
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Before proving this idea, we provide the following definition.

Definition 13. Let (A, B) be a pair of nonempty subsets of a G — metric space (X, G) with
Ay # @. Then the pair (A, B) is said to have the P — property if and only if:

If dg(x1,y1) = d(A,B) and dg(x,,¥,) = d(4,B) then

dg(x1,y1) = dg(x2,v,), Where x;,x, € Aand y,,y, € B.

Theorem 1. Let A and B be two subsets of a G — metric space (X, G) such that (4,G) is a
complete G — metric space, 4, is nonempty. Leta: A X A — [0,00) and p € W¥. Suppose that
T:A — B isanon-self mapping satisfying the following conditions:

(i) T(Ay) S By and (A, B) satisfies the P — property;
(i) T is @ — proximal admissible;
(ii1) there exist elements x jand x_1 in A_0 such that
de(x1,T(x9)) =ds(A4,B) and a(xy,x1) = 1;
(iv) Tis a G — continuous a — s proximal contraction.
Then, there exists an element x* € A, suchthatd;(x*,T(x*)) = d;(4,B).
Proof: From condition (iii), there exist elements x, and x_1 in A, such that

de(x1, T(xp)) = dg(A B)and a(xy, x;) = 1. 1)
Since T(Ay) S By, there exists x, € Aysuch that

dg(x2, T(x1)) = dg (A, B).
Now we have

a(xg,x1) = 1,dg(x1, T(x)) = dg(A,B) and d;(x,,T(x,)) = dg(A,B). )
Since T is proximal admissible, this implies a(x;,x,) = 1. Thus, we have

dg (xz, T(xl)) = dg(A,B) and a(xq,xy) = 1. (3)
Again, since T(Ay) S B, and continuing this process by induction we obtain a sequence

{x,} S Aysuch that

de(xXns1, T(xn)) =dg(A,B) and a(xy, xn,41) = 1,foralln € N. (4)
Since (A4, B) satisfies P — property, we conclude from (1) that

de (xp, T(xp)) = dg (A, B),foralln € N. 5)
From the condition (iv), that is, T is a-y-proximal contraction for all n € N, we have

a(xn» xn+1) dG(T(xn—l)» T(xn)) < ¢(d6(xn—1' xn))-

On the other hand, from (1) we have a(x,, x,+1) = 1 for all n € N. Which implies the above
inequality that

dg(T(xn-1), T(xp) < ¥(dg(Xp-1,%)), foralln € N. (6)
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Combining (2) and (3) yields

dG(xnr xn+1) S lp(dG(xn—lixn))ifor alln € N. @)
Suppose that for some positive integer k, we have x; = xj,;. This implies immediately from (1)
that,

de(xp, T(xx)) = dg(Xk+1, T(xx)) = dg(4,B),
that is x;, is a best proximity point of T. So, we can suppose that
de(Xp, Xpe1) > 0 foralln € N U {0}.
Using the monotony of s, by induction, it follows from (4) that

dg(Xn, Xn41) < P"(dg(x1,%0)), foralln € N U {0}. ®)

Now we will show that {x_n} is a Cauchy sequence. Let € > 0 be fixed. Since

Z,O;l Y"(dg(xq,x9)) < oo, there exists some positive integer h = h(e) such that

Y (dg(x1,%0)) < €. ©)
Letm > n > Kk, using the rectangle inequality, (5) and (6) we have

m-—1

m—1
doCtntm)) < ) ([dgCionicen)) < ) PFdsCe, %)) < ) Wr(de(raxo)) < e
k=n k=n

k>n

Thus, we prove that {x,} is a Cauchy sequence in G-metric space (X,G). Since (X,G) is G —
complete and A is closed, there exists some x* € Asuchthatx, —» x*asn — oo.

On the other hand, T is a continuous mapping. Then we have T(x,, = T(x*) asn — oo. The
continuity of G-metric function d_G implies that

dg(A,B) = dg(Xp41,T(xn)) = de(x",T(x")) asn — oo.
Therefore d; (x*, T(x*)) = dgA, B). This completes the proof of the theorem. o
In the next result, we remove the continuity hypothesis, assuming the following condition in A:
(H) If {x,,} be a sequence in A such that a(x,,, x,,41) = 1forallnandx, - x € Aasn — oo,

then there exists a subsequence {x;, )} of {x,,} such that a(x,),x) = 1 forall k.

Theorem 2. Let A and B be two subsets of a G-metric space (X, G) such that (4, G) is a complete
G-metric space, A, is nonempty. Leta: A X A — [0,00)andy € Y. SupposethatT:A — Bis
a non-self mapping satisfying the following conditions:

(1) T(Ay) € By and (A4, B) satisfies the P-property;

(i1) T is a-proximal admissible;
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(iii) there exist elements x, and x; in 4, such that

de(x1,T(x9)) = dg(A,B) and a(xy,x;) = 1;
(iv) (H) holds and T is an @« — ¥ proximal contraction.
Then, there exists an element x* € A, such thatd(x*, T(x*)) = d(4,B).

Proof: Following the proof of Theorem 1, there exist a Cauchy sequence {x,, } © A such that (1)
holdsand x,, » x* € Aasn — oo. From the condition (H), there exists a subsequence

{xXn(x)} of {x,} such that a(x»}, x*) = 1 forall k. We claim that
T(xXnay) = T(x"),ask — oo. (10)

Since T is an a — Y proximal contraction, we have

dg (T(xn(k)),T(x *)) < a(Xpx*) dg (T(xn(k)),T(x*)) <y (dG (xn(k),x*)),for all k.

Now our claim (10) follows immediately by letting k — oo in the above inequality. The
continuity of the G — metric function d;implies that

dg(A,B) = dg ((ngo+1) T(mao)) = de (e, T(x")),as n > oo,
Therefore, d;(x*, T(x*)) = d(A4, B). This completes the proof.

The next result gives us a sufficient condition that assures the uniqueness of the best proximity
point. At first, we need the following definition.

Definition 14. LetT: A — B be anon-self-mappingand a: A X A — [0, ). We say that T is
(a,dg) — regular if forall (x,y) € a~1([0,1]), there exists z € A, such that

a(x,z) = landa(y,z) = 1.
Theorem 3. In addition to the hypothesis of Theorem 1 (resp. Theorem 2), suppose that T is
(a,dg) —regular. Then T has a unique best proximity point.
Proof: From the proof of Theorem 1, we know that the set of best proximity points of T is

nonempty (x* € A, is a best proximity point). Suppose that y* € A, is another best proximity
point of T, that is,

de(T(x"),x") = dg(T(y"),y") = dg(4,B). (11)
Using the P-property and (11), we get
de(T(x"), T(y")) =ds(x",y7). (12)

We distinguish two cases:
Case 1. Ifa(x*,y") = 1.

Since T is an a-y proximal contraction, using (12), we obtain that
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de(x",y") = dg(T(x"), T(y")) = a(x",y") de(T(x"), T(y")) = P(dg(x",y")).
Since Y(t) < tforallt > 0, the above inequality holds only if dg(x*,y*) = 0, thatis

* *

x =y
Case 2. If a(x*,y") < 1.
By hypothesis, there exists z_0 € A_0 such that a(x *,z,) = 1and a(y *,z,) = 1. Since
T(Ay) S By, there exists z; € A, such that
dg (21, T(z0)) = dg(AB).
Now we have
a(x*,zy) = 1,dg(x*,T(x*)) = dg(A,B) and d;(z1,T(zy)) = dg(A,B).
Since T is a-proximal admissible, we get that a(x*,z;) = 1. Thus, we have
a(x*,z9) = 1,
d¢(z1,T(zy)) = dg(A,B) and a(x*,z;) = 1.

Continuing this process, by induction, we can construct a sequence {z,,} in A, such that

d¢(zp+1,T(zy)) = dg(A,B) and a(x*,z,) = 1,foralln € N U {0}. (13)
Using the P —property and (13),
dg(zns1,x") = dg(T(2,), T(x")), for alln € N U {0}, (1)

Since T is an a-y proximal contraction, we have
A(Zps1,x") dg(T(2,), T(x™)) < Y(d_G(zy,x")), foralln € N U {0}.

Combining the above inequality with (14), we get

A(Zps1,x") dg(Zps1, x*) < Y(dg(zp, x™), foralln € N U {0}.
This implies from (13) that

de(Zn+1,x™) < Y(dg(zy, x*)), foralln € N U {0}.
By induction we then derive
dg(zp,x) < YP™(dg(z9,x)), foralln € N U {0}. (15)
Suppose that z , = x *,in this case, from (14),
dg(z1,x7) = dg(T(z0),T(x")) = de(T(x"),T(x")) = 0,

that is z; = x*. Continuing this process, by induction, we get that z,, = x* for all
n € N U {0}.

Suppose now that d;(z 5, x*) > 0.Lettingn — oo in (15), we obtain that z, - x*asn —
co. So in all cases, we have z,, - x*asn — oo. Similarly, we can prove that

*

z, — y*asn — oo. By uniqueness of the limit, we obtain that x* = y~.
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Example 1. Let X = [0,)and G(x,y,z) = %(lx —yl+ |ly—z|+ |x—z|) bea
G —metricon X.Thendg;(x,y) = |x —y|.
Let A ={3,4,5,6,7}and B = {9,10,11,12,13}. DefineT:A U B - A U B by
T(x) = 9ifx = 7 and otherwise T(x) = x + 6.
Define ¢: [0,0) — [0,00) by Y(t) = tand a(x,y) = 1.
Clearly, d;(A,B) = 2,4y, = {7},By = {9}, and T(4,) S B,.
Since d;(x1,y1) = dg(A,B) = 2and d;(x,,y;) = dg(4,B) = 2then
de(xq1,y1) = dg(xy,¥,) S0, the pair (4, B) have the P —property.
If a(xy,v,) = landdg(uy, T(x1)) = dg(A B)and dg(uy, T(x,)) = dg(A B)
then a(uqy,uy) = 1 forall xq,y,,uy,u; € A. So, T is a-proximal admissible.
Furthermore, if we choose x, = x; = 7 € A, then we have:
de(x1,T(x)) = dg(A,B) = 2and a(xg,x1) = 1.
Also, it is clear that T is a continuous a-\y-proximal contraction.

Therefore, all conditions of Theorem 1 hold and T has a best proximity point. Here x, = 7 is
unique best proximity point.
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