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 We consider the G-metric space with including the P-property which 

are introduced by Z. Mustafa and B. Sims (Nonlinear Convex Anal. 7 

(2006) 289-297) and presented by B. Samet and et al. in a metric space 

(Nonlinear Anal. 4 (75) (2012) 2154-2165) respectively. In the present 

work we define P-property in a G-metric space and proved that under 

which various conditions there exist a best proximity point for non-

self-mapping in G-metric space. Also, we introduced for a certain such 

mappings which its best proximity point is unique under further 

conditions. 
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1. Introduction 

Let A and B be two nonempty subsets of a metric space (X, d). An element x ∈ A is said to be a 

fixed point of a given map 𝑇: 𝐴 →  𝐵 if 𝑇(𝑥)  =  𝑥. Clearly, T(A)  ∩  A ≠  ∅ is a necessary (but 

not sufficient) condition for the existence of a fixed point of T. If 𝑇(𝐴) ∩  𝐴 =  ∅, then  

𝑑(𝑥, 𝑇(𝑥)) >  0 for all 𝑥 ∈  𝐴, that is, the set of fixed points of T is empty. In a such situation, 

one often attempts to find an element x which is in some sense closest to T(x). Best approximation 

theory and best proximity point analysis have been developed in this direction. 

An element 𝑎 ∈  𝐴 is called a best approximate point of T if 

𝑑(𝑎 , 𝑇(𝑎)) = 𝑖𝑛𝑓{𝑑(𝑇(𝑎), 𝑥)   ∶    𝑥 ∈ 𝐴} 

An element 𝑎 ∈  A is called a best proximity point of T if  

𝑑(𝑎, 𝑇(𝑎))  =  𝑑(𝐴, 𝐵) 
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where  

𝑑(𝐴, 𝐵)  =  𝑖𝑛𝑓{𝑑(𝑥, 𝑦): 𝑥 ∈  𝐴, 𝑦 ∈  𝐵} 

Because of the fact that 𝑑(𝑥, 𝑇(𝑥))  ≥  𝑑(𝐴, 𝐵) for all x ∈  A, the global minimum of the mapping 

𝑥 →  𝑑(𝑥, 𝑇(𝑥)) is attained at a best proximity point. Clearly, if the underlying mapping is a self-

mapping, then it can be observed that a best proximity point is essentially a fixed point. The goal 

of best proximity point theory is to furnish sufficient conditions that assure the existence of such 

points. For more details on this approach, we refer the reader to De la Sen and Ibeas [5], Di Bari, 

Suzuki and Vetro [6], Suzuki, Eldred and P Veeramani [7], Al-Thagafi and Shahzad [2,3], Sadiq 

Basha [14,16], and Abkar and Gabeleh [1]. 

First, we recollect some necessary definitions and results in this direction. The notion of G-metric 

spaces is defined as follows. 

Definition 1. [19] Let X be a non-empty set, G: X ×  X ×  X →  ℝ+ be a function satisfying the 

following properties: 

(G1) 𝐺(𝑥, 𝑦, 𝑧) =  0 𝑖𝑓 𝑥 =  𝑦 =  𝑧, 

(G2) 0 <  𝐺(𝑥, 𝑥, 𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋 𝑤𝑖𝑡ℎ 𝑥 ≠  𝑦, 

(G3) 𝐺(𝑥, 𝑥, 𝑦)  ≤  𝐺(𝑥, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈  𝑋 𝑤𝑖𝑡ℎ 𝑦 ≠  𝑧, 

(G4) 𝐺(𝑥, 𝑦, 𝑧)  =  𝐺(𝑥, 𝑧, 𝑦)  =  𝐺(𝑦, 𝑧, 𝑥)  = ··· (symmetry in all three variables), 

(G5) 𝐺(𝑥, 𝑦, 𝑧)  ≤  𝐺(𝑥, 𝑎, 𝑎)  +  𝐺(𝑎, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋 (rectangle inequality). 

Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the 

pair (𝑋, 𝐺) is called a G-metric space. 

It should be noted that every G-metric on X induces a metric 𝑑𝐺  on X defined by 

𝑑𝐺(𝑥, 𝑦)  =  𝐺(𝑥, 𝑦, 𝑦)  +  𝐺(𝑦, 𝑥, 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋. 

Definition 2. [19] Let (𝑋, 𝐺) be a G-metric space, and let (𝑥𝑛) be a sequence of points of X. We 

say that (𝑥𝑛) is G-convergent to 𝑥 ∈  𝑋 if  

lim
𝑛,𝑚→∞

𝐺(𝑥, 𝑥𝑛, 𝑥𝑚)   =  0 

that is, for any𝜖 >  0, there exists 𝑁 ∈ ℕsuch that 𝐺(𝑥, 𝑥𝑛, 𝑥𝑚)  <  𝜖, for all 𝑛, 𝑚 ≥  𝑁. We call x 

the limit of the sequence and write 𝑥𝑛 →  𝑥 𝑜𝑟 𝑙𝑖𝑚 𝑥𝑛  =  𝑥. 

Proposition 1.  [19] Let (𝑋, 𝐺) be a 𝐺-metric space. The following are equivalent: 

(i) (𝑥𝑛) 𝑖𝑠 𝐺 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑡𝑜 𝑥, 

(ii) 𝐺(𝑥𝑛, 𝑥𝑛, 𝑥)  →  0 𝑎𝑠 𝑛 →  +∞, 

(iii) 𝐺(𝑥𝑛, 𝑥, 𝑥)  →  0 𝑎𝑠 𝑛 →  +∞, 

(iv) 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥)  →  0 𝑎𝑠 𝑛, 𝑚 →  +∞. 
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Definition 3. [19] Let (𝑋, 𝐺) be a 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 space. A sequence (𝑥𝑛) is called a 𝐺 − 𝐶𝑎𝑢𝑐ℎ𝑦 

sequence if, for any 𝜖 >  0, there exists 𝑁 ∈  ℕ such that 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑙)  <  𝜖 for all  

𝑚, 𝑛, 𝑙 ≥  𝑁, that is, 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑙) →  0 as 𝑛, 𝑚, 𝑙 →  +∞. 

Proposition 2.  [19] Let (𝑋, 𝐺) be a G−𝑚𝑒𝑡𝑟𝑖𝑐 space. Then the following statements are 

equivalent: 

(i) The sequence (𝑥𝑛) is 𝐺-Cauchy, 

(ii) For any 𝜖 >  0, there exists 𝑁 ∈  ℕ such that 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) <  𝜖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥  𝑁. 

Proposition 3.  [19] Let (𝑿, 𝑮) be a G-metric space. A mapping 𝒇: 𝑿 →  𝑿 is 𝑮 − 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 

at  

𝒙 ∈  𝑿 if and only if it is 𝑮 − 𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍𝒍𝒚 continuous at x, that is, whenever (𝒙𝒏is 𝑮-

convergent to 𝒙, (𝐟(𝒙𝒏)) i𝒔 𝑮 − 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝐭𝐨 𝒇(𝒙). 

Proposition 4. [19] Let (𝑿, 𝑮) be a G-metric space. Then, the function 𝑮(𝒙, 𝒚, 𝒛) is jointly 

continuous in all three of its variables. 

Proposition 5.  [19] Let (𝑿, 𝑮) be a G-metric space, then for any 𝒙, 𝒚, 𝒛, 𝒂 ∈  𝑿 it follows: 

(i) 𝐈𝐟 𝑮(𝒙, 𝒚, 𝒛)  =  𝟎 𝐭𝐡𝐞𝐧 𝒙 =  𝒚 =  𝒛, 

(ii) 𝐆(𝒙, 𝒚, 𝒛)  ≤  𝑮(𝒙, 𝒙, 𝒚)  +  𝑮(𝒙, 𝒙, 𝒛), 

(iii) 𝑮(𝒙, 𝒚, 𝒚)  ≤  𝟐𝑮(𝒚, 𝒙, 𝒙), 

(iv) 𝑮(𝒙, 𝒚, 𝒛) ≤  𝑮(𝒙, 𝒂, 𝒛) +  𝑮(𝒂, 𝒚, 𝒛). 

Definition 4.  [19] A G-metric space (𝑿, 𝑮) is called G-complete if every 𝑮 − 𝑪𝒂𝒖𝒄𝒉𝒚 sequence 

is G-convergent in (𝑿, 𝑮) 

Definition 5. [19] Let (𝑿, 𝑮) be a G-metric space. A mapping 𝑭: 𝑿 ×  𝑿 →  𝑿 is said to be 

continuous if for any two 𝑮 − 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕 sequences (𝒙𝒏) and (𝒚𝒏) converging to x and y 

respectively, {𝑭(𝒙𝒏, 𝒚𝒏)} is G-convergent to 𝑭(𝒙, 𝒚). 

Samet, Vetro and Vetro [18] introduced a new class of contractive mappings called 𝛼 − 𝜓 −

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 type mappings. Let (𝑋, 𝑑) be a metric space. Let Ψ be the set of nondecreasing 

functions  𝜓 ∶  [0, ∞)  →  [0, ∞) such that ∑  𝜓𝑛(𝑡)   <  ∞ 
∞

𝑛=1
 for each 𝑡 >  0, where 𝜓𝑛 is the 

n-th iterate of 𝜓. 

Definition 6.  [10] A self-mapping 𝑇: 𝑋 →  𝑋 is said to be an α-ψ-contraction, where 

 𝛼: 𝑋 ×  𝑋 →  [0, ∞) and 𝜓 ∈  𝛹, if  

𝛼(𝑥, 𝑦) 𝑑(𝑇𝑥, 𝑇𝑦)  ≤  𝜓(𝑑(𝑥, 𝑦)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋. 

Definition 7.  [10] A self-mapping T: X →  X is said to be α-admissible, where  

𝛼: 𝐴 ×  𝐴 →  [0, ∞) and 𝜓 ∈  𝛹, if  

𝑥, 𝑦 ∈  𝑋, 𝛼(𝑥, 𝑦)  ≥  1 ⇒  𝛼(𝑇𝑥, 𝑇𝑦)  ≥  1. 
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In [19] Jleli and Samet used following notions: 

𝑑(𝐴, 𝐵): =  𝑖𝑛𝑓 {𝑑(𝑎, 𝑏): 𝑎 ∈  𝐴, 𝑏 ∈  𝐵}, 

A0: =  {𝑎 ∈  𝐴: 𝑑(𝑎, 𝑏) =  𝑑(𝐴, 𝐵), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈  𝐵}, 

B0: =  {𝑏 ∈  𝐵: 𝑑(𝑎, 𝑏) =  𝑑(𝐴, 𝐵), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈  𝐴}. 

Definition 8.  An element 𝑥∗  ∈  𝐴 is said to be a best proximity point of the non-self-mapping 

 𝑇: 𝐴 →  𝐵 if it satisfies the condition that  

𝑑(𝑥∗, 𝑇(𝑥∗))  =  𝑑(𝐴, 𝐵). 

Definition 9.  [18] Let (𝐴, 𝐵) be a pair of nonempty subsets of a metric space (𝑋, 𝑑) with 

 𝐴0  ≠  ∅. Then the pair (𝐴, 𝐵) is said to have the 𝑃 − 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 if and only if : 

If 𝑑(𝑥1, 𝑦1)  =  𝑑(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑(𝑥2, 𝑦2)  =  𝑑(𝐴, 𝐵)  𝑡ℎ𝑒𝑛 𝑑(𝑥1, 𝑥2)  =  𝑑(𝑦1, 𝑦2), 

where 𝑥1, 𝑥2 ∈  𝐴 and y1, y2 ∈  𝐵 . 

Definition 10. [18] Let 𝑇: 𝐴 →  𝐵 and 𝛼: 𝐴 ×  𝐴 →  [0, ∞). We say that T is 𝛼 − 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 

admissible if: 

α(𝑥1, 𝑥2)  ≥  1 and d(𝑢1, 𝑇(𝑥1))  =  𝑑(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑(𝑢2, 𝑇(𝑥2))  =  𝑑(𝐴, 𝐵)  

then α(𝑢1, 𝑢2)  ≥  1, 

for all 𝑥1, 𝑥2, 𝑢1, 𝑢2  ∈  A. 

Definition 11. [18] A non-self-mapping 𝑇: 𝐴 →  𝐵 is said to be an α-ψ-proximal contraction, 

where 𝛼: 𝐴 ×  𝐴 →  [0, ∞) and ψ ∈  Ψ, if  

α(x, y) d(T(x), T(y))  ≤  ψ(d(x, y)) for all x, y ∈  A. 

Let (X, G) be a G-metric space. Suppose that A and B are nonempty subsets of a 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 

space (X, G). Hussain, Latif and Salimi in [20] defined the following sets: 

A0: =  {x ∈  A: d𝐺(x, y)  =  d𝐺(A, B), for some y ∈  B} 

B0 ∶=  {y ∈  B: d𝐺(x, y)  =  d𝐺(A, B), for some x ∈  A} 

where d𝐺(𝐴, 𝐵)  =  𝑖𝑛𝑓{d𝐺(𝑥, 𝑦): 𝑥 ∈  𝐴, 𝑦 ∈  𝐵}. 

Definition 12. Let (X, G) be a 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 space and let 𝐴 and B be two nonempty subsets of 𝑋. 

Then B is said to be approximatively compact with respect to 𝐴 if every sequence {𝑦𝑛} in B, 

satisfying the condition d𝐺(𝑥, 𝑦𝑛)  →  d𝐺(𝑥, 𝐵) for some 𝑥 ∈  𝐴, has a convergent subsequence. 

 

2. Main results 

The first result of this section is under which conditions there exist a best proximity point for non-

self-mapping 𝑇 in 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 space. 
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Before proving this idea, we provide the following definition. 

Definition 13. Let (A, B) be a pair of nonempty subsets of a G − metric space (𝑋, 𝐺) with 

 A0  ≠  ∅. Then the pair (A, B) is said to have the P − property if and only if: 

If  𝑑𝐺(𝑥1, 𝑦1)  =  𝑑(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑𝐺(𝑥2, 𝑦2)  =  𝑑(𝐴, 𝐵) then 

𝑑𝐺(𝑥1, 𝑦1) = 𝑑𝐺(𝑥2, 𝑦2), where 𝑥1, 𝑥2 ∈  A and 𝑦1, 𝑦2  ∈  B. 

Theorem 1. Let A and 𝐵 be two subsets of a 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 space (𝑋, 𝐺) such that (𝐴, 𝐺) is a 

complete 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 space, 𝐴0 is nonempty. Let 𝛼: 𝐴 ×  𝐴 →  [0, ∞) and 𝜓 ∈  𝛹. Suppose that 

𝑇: 𝐴 →  𝐵 is a non-self mapping satisfying the following conditions: 

(i) T(A0)  ⊆  B0 and (A, B) satisfies the 𝑃 − 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦; 

(ii) 𝑇 is 𝛼 − 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 admissible; 

(iii) there exist elements 𝑥 0and x_1 in A_0 such that 

𝑑𝐺(𝑥1, 𝑇(𝑥0))  = 𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝛼(𝑥0, 𝑥1)  ≥  1; 

(iv) T is a G − continuous α − ψ proximal contraction. 

Then, there exists an element 𝑥∗  ∈  A0  such that 𝑑𝐺(𝑥∗, 𝑇(𝑥∗))  =  𝑑𝐺(𝐴, 𝐵). 

Proof: From condition (iii), there exist elements 𝑥0 and x_1 in A0 such that 

𝑑𝐺(𝑥1, T(𝑥0))  =   𝑑𝐺(A, B) and α(𝑥0, 𝑥1)  ≥  1.  (1) 

Since T(A0)  ⊆  B0, there exists 𝑥2  ∈  A0such that 

𝑑𝐺(𝑥2, T(𝑥1))  =  𝑑𝐺(A, B).  

Now we have 

𝛼(𝑥0, 𝑥1) ≥  1, 𝑑𝐺(𝑥1, 𝑇(𝑥0))  =  𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑𝐺(𝑥2, 𝑇(𝑥1))  =  𝑑𝐺(𝐴, 𝐵).  (2) 

Since T is proximal admissible, this implies 𝛼(𝑥1, 𝑥2)  ≥  1. Thus, we have 

𝑑𝐺(𝑥2, T(𝑥1)) =  𝑑𝐺(A, B)  and   α(𝑥1, 𝑥2) ≥  1.  (3) 

Again, since 𝑇(A0) ⊆  𝐵0 and continuing this process by induction we obtain a sequence  

{𝑥𝑛}  ⊆  𝐴0 such that 

𝑑𝐺(𝑥𝑛+1, 𝑇(𝑥𝑛))  = 𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝛼(𝑥𝑛, 𝑥𝑛+1)  ≥  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ. (4) 

Since (𝐴, 𝐵) satisfies 𝑃 − 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, we conclude from (1) that 

𝑑𝐺  (𝑥𝑛, 𝑇(𝑥𝑛)) =  𝑑𝐺  (𝐴, 𝐵), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  𝑁. (5) 

From the condition (iv), that is, T is α-ψ-proximal contraction for all n ∈  ℕ, we have 

𝛼(𝑥𝑛, 𝑥𝑛+1) 𝑑𝐺(𝑇(𝑥𝑛−1), 𝑇(𝑥𝑛))  ≤  𝜓(𝑑𝐺(𝑥𝑛−1, 𝑥𝑛)). 

On the other hand, from (1) we have 𝛼(𝑥𝑛, 𝑥𝑛+1)  ≥  1 for all n ∈  ℕ. Which implies the above 

inequality that 

𝑑𝐺(𝑇(𝑥𝑛−1), 𝑇(𝑥𝑛)  ≤  𝜓(𝑑𝐺(𝑥𝑛−1, 𝑥𝑛)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ.  (6) 
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Combining (2) and (3) yields 

𝑑𝐺(𝑥𝑛, 𝑥𝑛+1)  ≤  𝜓(𝑑𝐺(𝑥𝑛−1, 𝑥𝑛)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ.  (7) 

Suppose that for some positive integer k, we have 𝑥𝑘  = 𝑥𝑘+1. This implies immediately from (1) 

that, 

𝑑𝐺(𝑥𝑘, 𝑇(𝑥𝑘))  =  𝑑𝐺(𝑥𝑘+1, 𝑇(𝑥𝑘))  =  𝑑𝐺(𝐴, 𝐵), 

that is 𝑥𝑘 is a best proximity point of 𝑇. So, we can suppose that  

𝑑𝐺(𝑥𝑛, 𝑥𝑛+1)  >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪ {0}. 

Using the monotony of ψ, by induction, it follows from (4) that 

𝑑𝐺(𝑥𝑛, 𝑥𝑛+1)  ≤  𝜓𝑛(𝑑𝐺(𝑥1, 𝑥0)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ ∪  {0}. 

 
(8) 

Now we will show that {x_n} is a Cauchy sequence. Let 𝜖 >  0 be fixed. Since 

 ∑ 𝜓𝑛(𝑑𝐺(𝑥1, 𝑥0))
∞

𝑛=1
 <  ∞, there exists some positive integer ℎ =  ℎ(𝜖) such that 

∑ 𝜓𝑘(𝑑𝐺(𝑥1, 𝑥0))  <  𝜖.  (9) 

Let m >  n >  k, using the rectangle inequality, (5) and (6) we have 

𝑑𝐺(𝑥𝑛, 𝑥𝑚))  ≤ ∑ (𝑑𝐺(𝑥𝑘, 𝑥𝑘+1))

𝑚−1

𝑘=𝑛

 ≤ ∑ 𝜓𝑘(𝑑𝐺(𝑥1, 𝑥0))

𝑚−1

𝑘=𝑛

   ≤  ∑ 𝜓𝑘(𝑑𝐺(𝑥1, 𝑥0))

𝑘>𝑛

  <  ϵ. 

Thus, we prove that {𝑥𝑛} is a Cauchy sequence in G-metric space (𝑋, 𝐺). Since (X, G) is 𝐺 −

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 and A is closed, there exists some 𝑥∗  ∈  𝐴 such that 𝑥𝑛  →  𝑥∗ 𝑎𝑠 𝑛 →  ∞.  

On the other hand, T is a continuous mapping. Then we have 𝑇(𝑥𝑛 →  𝑇(𝑥∗) 𝑎𝑠 𝑛 →  ∞. The 

continuity of G-metric function d_G implies that  

𝑑𝐺(𝐴, 𝐵)  =  𝑑𝐺(𝑥𝑛+1, 𝑇(𝑥𝑛))  →  𝑑𝐺(𝑥∗, 𝑇(𝑥∗)) 𝑎𝑠 𝑛 →  ∞.  

Therefore 𝑑𝐺(𝑥∗, 𝑇(𝑥∗))   =  𝑑𝐺𝐴, 𝐵). This completes the proof of the theorem. 

In the next result, we remove the continuity hypothesis, assuming the following condition in A: 

(H) If {𝑥𝑛} be a sequence in A such that 𝛼(𝑥𝑛, 𝑥𝑛+1)  ≥  1 for all n and 𝑥𝑛  →  𝑥 ∈  𝐴 as n →  ∞,  

then there exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that α(𝑥𝑛(𝑘), x)  ≥  1 for all k. 

 

Theorem 2. Let A and B be two subsets of a G-metric space (𝑋, 𝐺) such that (𝐴, 𝐺) is a complete 

G-metric space, 𝐴0 is nonempty. Let 𝛼: 𝐴 ×  𝐴 →  [0, ∞) and 𝜓 ∈  𝛹. Suppose that 𝑇: 𝐴 →  𝐵 is 

a non-self mapping satisfying the following conditions: 

 

(i) 𝑇(𝐴0)  ⊆  𝐵0 𝑎𝑛𝑑 (𝐴, 𝐵) satisfies the P-property; 

(ii) T is α-proximal admissible; 
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(iii) there exist elements 𝑥0 and 𝑥1 in 𝐴0 such that 

𝑑𝐺( 𝑥1 , 𝑇(𝑥0))  =  𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝛼(𝑥0, 𝑥1 )  ≥  1; 

(iv) (H) holds and 𝑇 is an 𝛼 − 𝜓 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 contraction. 

Then, there exists an element 𝑥∗  ∈  𝐴0 such that d(𝑥∗, T(𝑥∗))  =  𝑑(𝐴, 𝐵) . 

Proof: Following the proof of Theorem 1, there exist a Cauchy sequence {𝑥𝑛 } ⊂  𝐴 such that (1) 

holds and 𝑥𝑛 →  𝑥∗  ∈  𝐴 𝑎𝑠 𝑛 →  ∞. From the condition (H), there exists a subsequence  

{𝑥𝑛(𝑘)} of {𝑥𝑛} such that 𝛼(𝑥𝑛(𝑘)}, 𝑥∗)  ≥  1 for all k. We claim that 

𝑇(𝑥𝑛(𝑘))  →  𝑇(𝑥∗), 𝑎𝑠 𝑘 →  ∞. (10) 

Since T is an 𝛼 − 𝜓 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 contraction, we have 

𝑑𝐺 (T(𝑥𝑛(𝑘)), T(x ∗)) ≤  α(𝑥𝑛(𝑘), 𝑥∗) 𝑑𝐺 (T(𝑥𝑛(𝑘)), T(𝑥∗)) ≤ 𝜓 (𝑑𝐺(𝑥𝑛(𝑘), 𝑥∗)) , for all 𝑘 . 

Now our claim (10) follows immediately by letting 𝑘 →  ∞ in the above inequality. The 

continuity of the 𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 function 𝑑𝐺implies that 

𝑑𝐺(𝐴, 𝐵)  =  𝑑𝐺 ((𝑥𝑛(𝑘)+1), T(𝑥𝑛(𝑘)))  → 𝑑𝐺(𝑥∗, 𝑇(𝑥∗)), 𝑎𝑠 𝑛 →  ∞. 

Therefore, 𝑑𝐺(𝑥∗, 𝑇(𝑥∗))  =  𝑑(𝐴, 𝐵). This completes the proof. 

 

The next result gives us a sufficient condition that assures the uniqueness of the best proximity 

point. At first, we need the following definition. 

Definition 14.  Let 𝑇: 𝐴 →  𝐵 be a non-self-mapping and 𝛼: 𝐴 ×  𝐴 →  [0, ∞). We say that T is 

 (𝛼, 𝑑𝐺) − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 if for all (𝑥, 𝑦)  ∈  𝛼−1([0,1]), there exists 𝑧 ∈  𝐴0 such that 

𝛼(𝑥, 𝑧)  ≥  1 and 𝛼(𝑦, 𝑧)  ≥  1. 

Theorem 3.  In addition to the hypothesis of Theorem 1 (resp. Theorem 2), suppose that T is  

(α, 𝑑𝐺) − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. Then T has a unique best proximity point. 

Proof: From the proof of Theorem 1, we know that the set of best proximity points of T is 

 nonempty (𝑥∗  ∈  𝐴0 is a best proximity point). Suppose that 𝑦∗  ∈  𝐴0 is another best proximity 

point of 𝑇, that is, 

𝑑𝐺(𝑇(𝑥∗), 𝑥∗)  =  𝑑𝐺(𝑇(𝑦∗), 𝑦∗)  =  𝑑𝐺(𝐴, 𝐵). (11) 

Using the P-property and (11), we get 

𝑑𝐺(𝑇(𝑥∗), 𝑇(𝑦∗))  = 𝑑𝐺(𝑥∗, 𝑦∗). (12) 

We distinguish two cases: 

Case 1.  If 𝛼(𝑥∗, 𝑦∗)  ≥  1. 

Since T is an α-ψ proximal contraction, using (12), we obtain that 
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𝑑𝐺(𝑥∗, 𝑦∗)  =  𝑑𝐺(𝑇(𝑥∗), 𝑇(𝑦∗))  ≤  𝛼(𝑥∗, 𝑦∗) 𝑑𝐺(𝑇(𝑥∗), 𝑇(𝑦∗))  ≤  𝜓(𝑑𝐺(𝑥∗, 𝑦∗)). 

Since ψ(t) <  t for all t >  0, the above inequality holds only if dG(𝑥∗, 𝑦∗) =  0, that is 

𝑥∗ = 𝑦∗. 

Case 2. 𝐼𝑓 𝛼(𝑥∗, 𝑦∗) <  1. 

By hypothesis, there exists z_0 ∈  A_0 such that α(x ∗, z0)  ≥  1 and α(y ∗, z0)  ≥  1. Since  

T(A0)  ⊆  B0, there exists  z1 ∈  A0 such that 

𝑑𝐺(z1, T(z0))  =  𝑑𝐺(A, B). 

Now we have 

𝛼(𝑥∗, z0)  ≥  1, 𝑑𝐺(𝑥∗, 𝑇(𝑥∗))  =  𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑𝐺(𝑧1, 𝑇(z0))  =  𝑑𝐺(𝐴, 𝐵). 

Since T is α-proximal admissible, we get that 𝛼(𝑥∗, 𝑧1)  ≥  1. Thus, we have 

𝛼(𝑥∗, z0)  ≥  1, 

𝑑𝐺(𝑧1, 𝑇(z0))  =  𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝛼(𝑥∗, 𝑧1)  ≥  1. 

Continuing this process, by induction, we can construct a sequence {𝑧𝑛} in A0 such that 

𝑑𝐺(𝑧𝑛+1, 𝑇(𝑧𝑛))  =  𝑑𝐺(𝐴, 𝐵) 𝑎𝑛𝑑 𝛼(𝑥∗, 𝑧𝑛)  ≥  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪ {0}. (13) 

Using the 𝑃 −property and (13), 

𝑑𝐺(𝑧𝑛+1, 𝑥∗)  =  𝑑𝐺(𝑇(𝑧𝑛), 𝑇(𝑥∗)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪ {0}. (14) 

Since T is an α-ψ proximal contraction, we have 

𝛼(𝑧𝑛+1, 𝑥∗) 𝑑𝐺(𝑇(𝑧𝑛), 𝑇(𝑥∗))  ≤  𝜓(𝑑_𝐺(𝑧𝑛, 𝑥∗)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  𝑁 ∪ {0}. 

Combining the above inequality with (14), we get 

𝛼(𝑧𝑛+1, 𝑥∗) 𝑑𝐺(𝑧𝑛+1, 𝑥∗)  ≤  𝜓(𝑑𝐺(𝑧𝑛, 𝑥∗), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪  {0}. 

This implies from (13) that 

𝑑𝐺(𝑧𝑛+1, 𝑥∗)  ≤  𝜓(𝑑𝐺(𝑧𝑛, 𝑥∗)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪ {0}. 

By induction we then derive 

𝑑𝐺(𝑧𝑛, 𝑥∗)  ≤  𝜓𝑛(𝑑𝐺(𝑧0, 𝑥∗)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈  ℕ ∪  {0}.  (15) 

Suppose that  𝑧 0 =  𝑥 ∗, in this case, from (14), 

𝑑𝐺(𝑧 1, 𝑥∗)  =  𝑑𝐺(𝑇(𝑧 0), 𝑇(𝑥∗))  =  𝑑𝐺(𝑇(𝑥∗), 𝑇(𝑥∗))  =  0, 

that is 𝑧1 =  𝑥∗. Continuing this process, by induction, we get that 𝑧𝑛 =  𝑥∗ for all  

𝑛 ∈  ℕ ∪  {0}. 

Suppose now that 𝑑𝐺(𝑧 0, 𝑥∗)  >  0. Letting n →  ∞ in (15), we obtain that 𝑧𝑛 →  𝑥∗ 𝑎𝑠 𝑛 →

 ∞. So in all cases, we have 𝑧𝑛  →  𝑥∗ 𝑎𝑠 𝑛 →  ∞. Similarly, we can prove that  

𝑧𝑛  →  𝑦∗ 𝑎𝑠 𝑛 →  ∞. By uniqueness of the limit, we obtain that 𝑥∗  =  𝑦∗. 
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Example 1. Let 𝑋 =  [0, ∞)𝑎𝑛𝑑 𝐺(𝑥, 𝑦, 𝑧) =  
1

4
(|𝑥 − 𝑦| + |𝑦 − 𝑧| +  |𝑥 − 𝑧|) be a  

𝐺 − 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑛 𝑋. Then 𝑑𝐺(𝑥, 𝑦)  =  |𝑥 − 𝑦|. 

Let 𝐴 = {3,4,5,6,7} and 𝐵 = {9,10,11,12,13}. Define 𝑇: 𝐴 ∪  𝐵 →  𝐴 ∪  𝐵 by 

 𝑇(𝑥)  =  9 if 𝑥 =  7 and otherwise 𝑇(𝑥)  =  𝑥 +  6. 

Define 𝜓: [0, ∞)  →  [0, ∞) 𝑏𝑦 𝜓(𝑡)  =  𝑡 and 𝛼(𝑥, 𝑦)  =  1. 

Clearly, 𝑑𝐺(𝐴, 𝐵)  =  2, 𝐴0  =  {7}, 𝐵0 =  {9}, 𝑎𝑛𝑑 𝑇(𝐴0)  ⊆  𝐵0. 

Since 𝑑𝐺(𝑥1, 𝑦1)  =  𝑑𝐺(𝐴, 𝐵)  =  2 𝑎𝑛𝑑 𝑑𝐺(𝑥2, 𝑦2)  =  𝑑𝐺(𝐴, 𝐵)  =  2 then 

 𝑑𝐺(𝑥1, 𝑦1)  =  𝑑𝐺(𝑥2, 𝑦2) so, the pair (𝐴, 𝐵) have the 𝑃 −property. 

If α(𝑥1, 𝑦1)   ≥  1 and 𝑑𝐺(𝑢1, 𝑇(𝑥1))  =  𝑑𝐺(A, B) and 𝑑𝐺(u2, T(𝑥2))  =  𝑑𝐺(A, B)  

then 𝛼(𝑢1, 𝑢2)  ≥  1 for all 𝑥1, 𝑦1, 𝑢1, 𝑢2 ∈  𝐴. So, T is α-proximal admissible. 

Furthermore, if we 𝑐ℎ𝑜𝑜𝑠𝑒 𝑥0  =  𝑥1  =  7 ∈  𝐴0 then we have: 

𝑑𝐺(𝑥1, 𝑇(𝑥0))  =  𝑑𝐺(𝐴, 𝐵)  =  2 𝑎𝑛𝑑 𝛼(𝑥0, 𝑥1)  ≥  1. 

Also, it is clear that T is a continuous α-ψ-proximal contraction. 

Therefore, all conditions of Theorem 1 hold and T has a best proximity point. Here 𝑥0  =  7 is 

unique best proximity point. 
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