| تعداد نشریات | 32 |
| تعداد شمارهها | 816 |
| تعداد مقالات | 7,895 |
| تعداد مشاهده مقاله | 37,282,144 |
| تعداد دریافت فایل اصل مقاله | 8,355,399 |
Improved lower bound of spatial analyticity radius for solutions to nonlinear wave equation | ||
| Journal of Mathematical Modeling | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 22 آبان 1404 اصل مقاله (240.93 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2025.30485.2735 | ||
| نویسندگان | ||
| Tegegne Getachew* ؛ Betre Shiferaw | ||
| Department of Mathematics, Mekdela Amba University, Ethiopia | ||
| چکیده | ||
| In this paper, the rate of decay for the radius of spatial analyticity for solutions of the nonlinear wave equation \[\partial_t^2 u -\Delta u + |u|^{p-1}u=0, \] on $\mathbb{R}^d\times\mathbb{R}$ is studied. In particular, for a class of analytic initial data with a uniform radius of analyticity $\sigma_0$, we obtain an asymptotic lower bound $\sigma(t)\ge a_0|t|^{-\frac23}$ when $d=1$ and $\sigma(t)\ge a_0|t|^{-\frac32}$ when $d=2$ on the uniform radius of analyticity $\sigma(t)$ of solution $u(\cdot,t)$ as $|t|\rightarrow +\infty$ . This is an improvement of the work [D.~O.~da~Silva, A.~J.~Castro, Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces, J. Differential Equations 275(2021)~234--249], where the authors obtained a decay rate of order $\sigma(t)\geq a_0(1+|t|)^{-(\frac{p+1}{2})}$ when $d=1$ and $\sigma(t)\geq a_0(1+|t|)^{-(\frac{p+1-\epsilon}{1-\epsilon})}$ when $d=2$ as $|t|\rightarrow +\infty$ for large time $t$, where $\epsilon>0$ is arbitrary. We used an approximate conservation law in a modified Gevrey space, contraction mapping principle, interpolation and Sobolev embedding to obtain the results. | ||
| کلیدواژهها | ||
| Nonliear wave equation؛ Modified Gevrey space؛ Approximate conservation؛ Radius of analyticity؛ Decay rate for the radius | ||
|
آمار تعداد مشاهده مقاله: 1 |
||