
تعداد نشریات | 31 |
تعداد شمارهها | 811 |
تعداد مقالات | 7,807 |
تعداد مشاهده مقاله | 35,741,744 |
تعداد دریافت فایل اصل مقاله | 8,042,486 |
Tau-Collocation method for weakly singular Volterra integral equations and related special cases | ||
Journal of Mathematical Modeling | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 07 مهر 1404 اصل مقاله (238.03 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2025.30587.2742 | ||
نویسندگان | ||
Sedaghat Shahmorad* 1؛ Mahdi Mostafazadeh2؛ Fevzi Erdogan3 | ||
1Department of Applied Mathematics, University of Tabriz, Tabriz-Iran | ||
2Department of Applied Mathematics, University of Tbariz, Tabriz | ||
3Department of Mathematics, Van Uzuncu Yil University, Van, Turkey | ||
چکیده | ||
The present study examines the implementation of the tau-collocation method for solving a class of Volterra integral equations and related cases which their kernels contain (special) weak singularity of type $(x^2-s^2)^{-1/2}$. These types of equations can be written in the form of the so-called \textit{cordial} Volterra integral equations and so inherit their properties. We will recall some conditions on the kernel and forcing function for which the existence and uniqueness of a solution has been proven. Then we will discuss regularity conditions for the solution of same types equations which indicate that unlike the standard Volterra integral equations with singularity of the form $(x-s)^{-\alpha}$, $0<\alpha<1$, these types of equations have regular solutions if the kernel and forcing functions are sufficiently smooth. This property allows us to use the classical Jacobi polynomials as a basis functions for collocation method. For this method, we will first derive a matrix formulation that makes it easy to implement. We will prove convergence of the method by providing an error bound. | ||
کلیدواژهها | ||
Tau-collocation method؛ cordial Volterra integral equations؛ weak singularity | ||
آمار تعداد مشاهده مقاله: 1 تعداد دریافت فایل اصل مقاله: 2 |