
تعداد نشریات | 31 |
تعداد شمارهها | 797 |
تعداد مقالات | 7,618 |
تعداد مشاهده مقاله | 29,080,049 |
تعداد دریافت فایل اصل مقاله | 7,671,743 |
Characterizations of algebraic and vertex connectivity of power graph of finite cyclic groups | ||
Journal of Algebra and Related Topics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 04 تیر 1404 | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2025.28572.1719 | ||
نویسندگان | ||
Ch. V. Visave* ؛ R. P. Deore | ||
, Department of Mathematics, University of Mumbai, Mumbai, India | ||
چکیده | ||
The Power graph of a group $G$ is a graph $\mathcal{P}(G)$ with vertex set $G$ and two vertices $x$ and $y$, $x \neq y$ are adjacent if there exists some integer $k$ such that $x=y^k$ or $y=x^k$. We denote the vertex connectivity of power graph $\mathcal{P}(G)$ by $\mathcal{K}(\mathcal{P}(G))$ and the algebraic connectivity of power graph $\mathcal{P}(G)$ by $\lambda_{n-1}(\mathcal{P}(G))$. This paper investigates the upper bound for the vertex connectivity and the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_{n})$. Moreover, we discuss the equivalent conditions for $\mathcal{P}(\mathbb{Z}_{n})$ to be Laplacian integral. Further the conjecture for an upper bound of the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_{n})$ is posed in this article. | ||
کلیدواژهها | ||
Power graph؛ Algebraic connectivity؛ Vertex connectivity؛ Laplacian integral؛ Finite cyclic group | ||
آمار تعداد مشاهده مقاله: 27 |