

Characterizations of algebraic and vertex connectivity of power graph of finite cyclic groups

Chetana V. Visave $^{\dagger *}$, Rajendra Deore ‡

† ‡Department of Mathematics, University of Mumbai, Mumbai, India Emails: visavechetana94@gmail.com, rpdeore@gmail.com

Abstract. The Power graph of a group G is a graph $\mathcal{P}(G)$ with vertex set G and two vertices x and y, $x \neq y$ are adjacent if there exists some integer k such that $x = y^k$ or $y = x^k$. We denote the vertex connectivity of power graph $\mathcal{P}(G)$ by $\mathcal{K}(\mathcal{P}(G))$ and the algebraic connectivity of power graph $\mathcal{P}(G)$ by $\mathcal{N}(\mathcal{P}(G))$. This paper investigates the upper bound for the vertex connectivity and the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$. Moreover, we discuss the equivalent conditions for $\mathcal{P}(\mathbb{Z}_n)$ to be Laplacian integral. Further the conjecture for an upper bound of the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is posed in this article.

Keywords: Power graph, Algebraic Connectivity, Vertex Connectivity, Laplacian Integral, Finite cyclic group.

AMS Subject Classification 2010: 05C25, 05C50, 05C10, 05C40.

1 Introduction and preliminaries

The concept of directed power graph of a semigroup S was first introduced by [8]. Motivated by this, [3] defined the undirected power graph $\mathcal{P}(G)$ of a group G as the undirected graph whose vertex set is a set of elements G and any two vertices $a, b \in G$ are adjacent in $\mathcal{P}(G)$ if and only if there exists some integer k such that either $a = b^k$ or $b = a^k$. [9], [1] contains a detailed survey on the power graphs of groups. For a graph Γ , the set of vertices and the edges is denoted by $V(\Gamma)$ and $E(\Gamma)$ respectively. A simple graph is a graph without loops and the parallel edges. A null graph is a graph with no vertices and no edges. A graph with one vertex and no edges is called as a trivial graph. A graph is connected if and only if there is a path between every pair of vertices. A component of a graph Γ is the maximal connected subgraph of Γ . The vertex connectivity of a graph Γ is denoted by $\mathcal{K}(\Gamma)$ and it is the minimum number of vertices whose removal results in a disconnected graph or a trivial graph. For any finite simple undirected

*Corresponding author

Received: 27 September 2024/ Revised: 14 April 2025/ Accepted: 11 May 2025

DOI: 10.22124/JART.2025.28572.1719

graph Γ with the ordered vertex set $\{v_1, v_2, \dots, v_n\}$, the Laplacian matrix $L(\Gamma)$ of graph Γ is defined by $L(\Gamma) = D(\Gamma) - A(\Gamma)$, where $A(\Gamma)$ is the adjacency matrix of Γ whose $(i, j)^{th}$ entry is 1, if v_i is adjacent to v_j and 0 otherwise, and $D(\Gamma)$ is the diagonal matrix whose $(i, i)^{th}$ entry is degree of v_i . We denote the Laplacian characteristic polynomial $det(xI - L(\Gamma))$ of a graph Γ by $\Theta(\Gamma, x)$ instead of $\Theta(L(\Gamma), x)$. The principal submatrix of $L(\Gamma)$ formed by deleting the rows and the columns corresponding to the vertices v_1, v_2, \ldots, v_i of a graph Γ is denoted by $L_{v_1,v_2,\dots,v_i}(\Gamma)$. As per convention, if i=n, then $\Theta(L_{v_1,v_2,\dots,v_n}(\Gamma),x)=1$ [4]. The matrix $L(\Gamma)$ is a real symmetric, singular and a positive semi-definite, so all of it's eigenvalues are real and nonnegative. Furthermore, the sum of each row (column) of $L(\Gamma)$ is zero, which means the smallest eigenvalue of $L(\Gamma)$ is 0. The eigenvalues of $L(\Gamma)$ are called the Laplacian eigenvalues of Γ . We denote the Laplacian eigenvalues of Γ by $\lambda_1(\Gamma) \geq \lambda_2(\Gamma) \geq \cdots \geq \lambda_n(\Gamma) = 0$ always arranged in a non-increasing order and repeated according to their multiplicities. Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the distinct Laplacian eigenvalues of Γ with corresponding multiplicities n_1, n_2, \ldots, n_k . Then the Laplacian spectrum of Γ is denoted by $\begin{pmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_k \\ n_1 & n_2 & \dots & n_k \end{pmatrix}$. The Laplacian spectrum of a graph has a several applications like random walks, expansion properties, statistical efficiency and optimality properties [2]. The algebraic connectivity $\lambda_{n-1}(\Gamma)$ of a graph Γ is the second smallest Laplacian eigenvalue of Γ , which is considered as a measure of connectivity of Γ [6]. Moreover, the largest Laplacian eigenvalue $\lambda_1(\Gamma)$ of a graph Γ is called the Laplacian spectral radius of Γ . A graph Γ is called as the Laplacian integral, if all of its Laplacian eigenvalues are integers. A discussion related to the Laplacian eigenvalues of a graph and it's complement is in [10], [6], [5]. The Laplacian spectrums of $\mathcal{P}(\mathbb{Z}_n)$ and $\mathcal{P}(D_{2n})$ for particular values of n along with the relationship between the Laplacian spectrums of power graphs $\mathcal{P}(\mathbb{Z}_n)$ and $\mathcal{P}(D_{2n})$ is studied in [4]. Moreover, [4] contains a discussion on the lower and the upper bounds for the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$. Various results on the Laplacian specta of the power graphs of finite cyclic, dicyclic and finite p-groups are studied in [11].

Theorem 1 ([11]). The power graph of finite p-group is always Laplacian integral.

Theorem 2 ([4]). For each non-prime positive integer n > 3, the multiplicity of n as a Laplacian eigenvalue of $\mathcal{P}(\mathbb{Z}_n)$ is at least $\phi(n) + 1$.

Theorem 3 ([4]). For $n = p^{\alpha}q^{\beta}$, where p and q are distinct primes and $\alpha, \beta \in \mathbb{N}$, the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + p^{\alpha-1}q^{\beta-1}$, equality holds if $\alpha = 1 = \beta$.

Theorem 4 ([4]). For each positive integer $n \geq 2$, the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \geq \phi(n) + 1$. Equality holds if n is either a prime or the product of two distinct primes.

Theorem 5 ([11]). For any integer n > 1, $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) = \lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ if and only if n is a product of two distinct primes.

Theorem 6 ([11]). For any integer n > 1, the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is $\phi(n) + 1$ if and only if n is a prime number or product of two distinct primes.

2 Algebraic and vertex connectivity of $\mathcal{P}(\mathbb{Z}_n)$

The upper bound for the algebraic and the vertex connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is obtained for $n = p^{\alpha}q^{\beta}$, where $\alpha, \beta \in \mathbb{N}$ and p, q are distinct primes, and for the values of n, where n is a product of two or three distinct primes in [4]. In this section, we obtain the upper bounds for the algebraic and the vertex connectivity of $\mathcal{P}(\mathbb{Z}_n)$, where n is a product of 4, 5 and 6 distinct primes. Hence we obtain the upper bound for the algebraic and the vertex connectivity of a power graph of a finite cyclic group G of order n, where n is a product of 4, 5 and 6 distinct primes.

Proposition 1. For $n = \prod_{i=1}^{4} p_i$, where p_i , i = 1, 2, 3, 4 are distinct primes with $p_1 < p_2 < p_3 < p_4$, the vertex connectivity $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + \sum_{i=1}^{4} p_i + \sum_{i=1,2}^{2,3} p_i p_j - 6$.

Proof. Let S be the subset of \mathbb{Z}_n consisting of $\bar{0}$ and all the generators, $P_1 = \{a\bar{p}_1 \in V(\mathcal{P}(\mathbb{Z}_n)); p_2 \nmid a, p_3 \nmid a, p_4 \nmid a\}, P_2 = \{b\bar{p}_2 \in V(\mathcal{P}(\mathbb{Z}_n)); p_1 \nmid b, p_3 \nmid b, p_4 \nmid b\}, P_3 = \{c\bar{p}_3 \in V(\mathcal{P}(\mathbb{Z}_n)); p_1 \nmid c, p_2 \nmid c, p_4 \nmid c\}, P_4 = \{d\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); p_1 \nmid d, p_2 \nmid d, p_3 \nmid d\}, U_1 = \{u_1\bar{p}_1\bar{p}_2 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_1 \leq p_3p_4 - 1\}, U_2 = \{u_2\bar{p}_1\bar{p}_3 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_2 \leq p_2p_4 - 1\}, U_3 = \{u_3\bar{p}_1\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_3 \leq p_2p_3 - 1\}, U_4 = \{u_4\bar{p}_2\bar{p}_3 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_4 \leq p_1p_4 - 1\}, U_5 = \{u_5\bar{p}_2\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_4 \leq p_1p_4 - 1\}, U_5 = \{u_5\bar{p}_2\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_5 \leq p_1p_3 - 1\}, U_6 = \{u_6\bar{p}_3\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_6 \leq p_1p_2 - 1\}, T_1 = \{t_1\bar{p}_1\bar{p}_2\bar{p}_3 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_1 \leq p_4 - 1\}, T_2 = \{t_2\bar{p}_1\bar{p}_2\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_2 \leq p_3 - 1\}, T_3 = \{t_3\bar{p}_1\bar{p}_3\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_3 \leq p_2 - 1\} \text{ and } T_4 = \{t_4\bar{p}_2\bar{p}_3\bar{p}_4 \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_4 \leq p_1 - 1\}. \text{ Then all the sets } S, P_i, U_j, T_i, i = 1, 2, 3, 4 \text{ and } j = 1, 2, \dots, 6 \text{ are pairwise disjoint sets of vertices of } \mathcal{P}(\mathbb{Z}_n) \text{ whose union is } V(\mathcal{P}(\mathbb{Z}_n)). \text{ Even though every vertex of the set } S \text{ is adjacent to all other vertices of } \mathcal{P}(\mathbb{Z}_n), \mathcal{P}(\mathbb{Z}_n) - S \text{ is connected.}$ The connectedness diagram among the sets P_i, U_j and T_i , where i = 1, 2, 3, 4 and $j = 1, 2, \dots, 6$ can be obtained as in Figure 1. Now to make the graph $\mathcal{P}(\mathbb{Z}_n) - S$ disconnected, we need to remove the sets T_1, T_2, T_3, T_4 and the three sets from U_1, U_2, U_3, U_4, U_5 and U_6 . To make the upper bound of $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$ sharp, we need to remove the sets T_1, T_2, T_3, T_4 along with the three sets with minimum cardinality from U_1, \dots, U_6 , which are U_3, U_5 and U_6 . Therefore the graph $\mathcal{P}(\mathbb{Z}_n) - S - T_1 - T_2 - T_3 - T_4 - U_3 - U_5 - U_6$ is disconnected and thus $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq |S| + \sum_{i=1}^4 |T_i| + \sum_{i$

Corollary 1. For $n = \prod_{i=1}^{4} p_i$, where p_i , i = 1, 2, 3, 4 are distinct primes with $p_1 < p_2 < p_3 < p_4$, the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + \sum_{i=1}^{4} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{2,3} p_i p_j - 6$.

Proof. For any graph G, the algebraic connectivity $\lambda_{n-1}(G)$ and the vertex connectivity $\mathcal{K}(G)$ of G satisfies the inequality $\lambda_{n-1}(G) \leq \mathcal{K}(G)$ [6]. Using this fact and the upper bound obtained

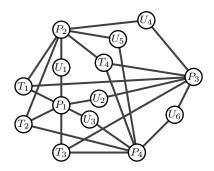


Figure 1: Connectedness diagram of $\mathcal{P}(\mathbb{Z}_n) - S$, where $n = \prod_{i=1}^4 p_i$

for $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$, where $n = \prod_{i=1}^4 p_i$, i = 1, 2, 3, 4 are distinct primes with $p_1 < p_2 < p_3 < p_4$ in proposition 1, we can conclude the result.

Proposition 2. For $n = \prod_{i=1}^{5} p_i$, where p_i , i = 1, 2, 3, 4, 5 are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5$, the vertex connectivity $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + \sum_{i=1}^{5} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{4,5} p_i p_j + \sum_{\substack{i,j=1,2\\i\neq j\neq k}}^{2,3,4} p_i p_j p_k - 18$.

Proof. Let S be the subset of \mathbb{Z}_n consisting of $\bar{0}$ and all the generators, $P_1 = \{a\bar{p_1} \in V(\mathcal{P}(\mathbb{Z}_n)); p_2, p_3\}$ $p_3, p_4, p_5 \nmid a$, $P_2 = \{b\bar{p_2} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5 \nmid b\}, P_3 = \{c\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_4, p_5 \nmid b\}$ $c\}, P_4 = \{d\bar{p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5 \nmid d\}, P_5 = \{e\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_4 \nmid e\}, U_1 = e\}$ $\{u_1\overline{p_1p_2} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_1 \le p_3p_4p_5 - 1\}, U_2 = \{u_2\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_3 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_4 = \{u_3\overline{p_1p_2} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_2 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_2p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_4p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_3p_5 - 1\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_5 = \{u_3\overline{p_1p_3} \in V(\mathcal{P}(\mathbb$ $1\}, U_3 = \{u_3\overline{p_1p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_3 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_3p_5 - 1\}, U_4 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_4 \le p_2p_5 - 1\}, U_5 = \{u_4\overline{p_1p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_5 = \{u_4\overline{p_1p_5} \in V$ $p_2p_3p_4-1\}, U_5=\{u_5\overline{p_2p_3}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< u_5\leq p_1p_4p_5-1\}, U_6=\{u_6\overline{p_2p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< u_5\leq p_1p_4p_5-1\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< u_5\leq p_1p_4p_5-1\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n)\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n)\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n)\}, U_6=\{u_6\overline{p_1p_4}\in V(\mathcal{P}(\mathbb{Z}_n)\}, U_6=\{u_6\overline{p_$ $u_6 \leq p_1 p_3 p_5 - 1\}, U_7 = \{u_7 \overline{p_2 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_7 \leq p_1 p_3 p_4 - 1\}, U_8 = \{u_8 \overline{p_3 p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_7 \leq u_7 \leq u_8 \overline{p_3 p_4} = u_8$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_8 \le p_1 p_2 p_5 - 1\}, U_9 = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_4 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_9 \le p_1 p_2 p_5 - 1\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_{10} = \{u_9 \overline{p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_{10} = \{u_9 \overline$ $\{u_{10}\overline{p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_{10} \leq p_1p_2p_3 - 1\}, T_1 = \{t_1\overline{p_1p_2p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_1 \leq t_1 \leq t_2 \leq t_3 \leq t$ $p_4p_5-1\}, T_2=\{t_2\overline{p_1p_2p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_2\leq p_3p_5-1\}, T_3=\{t_3\overline{p_1p_2p_5}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_3\leq p_3p_5-1\}, T_3=\{t_3\overline{p_1p_2p_5}\in V(\mathcal{P$ $p_2p_4-1\}, T_6=\{t_6\overline{p_1p_4p_5}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_6\leq p_2p_3-1\}, T_7=\{t_7\overline{p_2p_3p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_7\leq p_2p_3-1\}, T_8=\{t_8\overline{p_2p_3p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_8\leq p_2p_3-1\}, T_9=\{t_8\overline{p_2p_3p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, T_9=\{t_8\overline{p_2p_3p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, T_9=\{t_8\overline{p_2p_3p_4}\in V(\mathcal{P}(\mathbb{Z}_n))\}, T_9=\{t_8\overline{p_2p_3p_4}\in V(\mathcal$ $p_1p_5-1\}, T_8=\{t_8\overline{p_2p_3p_5}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_8\leq p_1p_4-1\}, T_9=\{t_9\overline{p_2p_4p_5}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_9\leq p_1p_4-1\}, T_9=\{t_9\overline{p_2p_4p_5}\in V(\mathcal{P}(\mathbb{Z}_n))\}, T_9=\{t_9\overline{p_2p_4p_5}\in V(\mathcal{P}(\mathbb{Z}_n)\}, T_9=\{t_9\overline{p_2p_4p_5}\in$ $t_9 \leq p_1p_3 - 1\}, T_{10} = \{t_{10}\overline{p_3p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{10} \leq p_1p_2 - 1\}, L_1 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_2 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_2 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_2 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_3 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_4 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_4 = \{l_1\overline{p_1p_2p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_5 = \{l_1\overline{p_1p_3p_4} \in \mathcal{P}(\mathbb{Z}_n)\}, L_5 = \{l_1\overline{p_1p_3p_4p_5} \in \mathcal{P}(\mathbb{Z}_n)\}, L_5 = \{l_1\overline{p_1p_3p$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_1 \leq p_5 - 1\}, L_2 = \{l_2\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_2\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_2 \leq p_4 - 1\}, L_3 = \{l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_3\overline{p_1p_2p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}$ $\{l_3\overline{p_1p_2p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_3 \le p_3 - 1\}, L_4 = \{l_4\overline{p_1p_3p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_4 \le p_2 - 1\}$ $i=1,\ldots,5$ and $j=1,2,\ldots,10$ are pairwise disjoint sets of vertices of $\mathcal{P}(\mathbb{Z}_n)$ whose union is $V(\mathcal{P}(\mathbb{Z}_n))$. Even though every vertex of the set S is adjacent to all other vertices of $\mathcal{P}(\mathbb{Z}_n)$, $\mathcal{P}(\mathbb{Z}_n) - S$ is connected. Moreover, $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{i=1}^5 L_i - \sum_{j=1}^{10} T_j$ is also connected. The connectedness diagram for $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{i=1}^5 L_i - \sum_{j=1}^{10} T_j$ can be obtained as in Figure 2. Now to make the graph $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{i=1}^5 L_i - \sum_{j=1}^{10} T_j$ disconnected, we need to remove the four sets from $U'_j s$, $j = 1, 2, \ldots, 10$ which are adjacent to the same $P_i, i = 1, 2, \ldots, 5$. To make the upper bound of $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$ sharp, we need to remove the sets $S, L_i, T_j, i = 1, 2, \ldots, 5$, $j = 1, 2, \ldots, 10$ along with the sets U_4, U_7, U_9, U_{10} with minimum cardinality. Therefore the graph $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{j=1}^{10} T_j - \sum_{i=1}^5 L_i - U_4 - U_7 - U_9 - U_{10}$ is disconnected and we have

$$\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq |S| + \sum_{i=1}^{5} |L_i| + \sum_{j=1}^{10} |T_j| + |U_4| + |U_7| + |U_9| + |U_{10}| = \phi(n) + \sum_{i=1}^{5} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{4,5} p_i p_j + \sum_{i=1}^{5} p_i p_i + \sum_{\substack{i=1\\i\neq j}}^{4,5} p_i + \sum_{\substack{i=1}}^{4,5} p_i p_i + \sum_{\substack{i=1}}^{4,5} p_i p_i + \sum_{\substack{i=1\\i\neq j}}^{4,5} p_i + \sum_{\substack{i=1}}^{4,5} p_i + \sum_{\substack{i=1}}^{4,5} p_i + \sum_{\substack{i=1}}^{4,5} p_i + \sum_{\substack{i=1\\i\neq j}}^{4,5} p_i + \sum_{\substack{i=$$

$$\sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{2,3,4} p_i p_j p_k - 18.$$

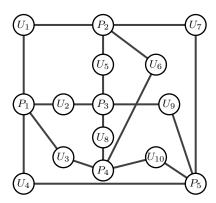


Figure 2: Connectedness diagram of $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{i=1}^5 L_i - \sum_{j=1}^{10} T_j$, where $n = \prod_{i=1}^5 p_i$

Corollary 2. For $n = \prod_{i=1}^{5} p_i$, where p_i , i = 1, 2, 3, 4, 5 are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5$, the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + \sum_{i=1}^{5} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{4,5} p_i p_j + \sum_{\substack{i,j=1,2\\i\neq j\neq k}}^{2,3,4} p_i p_j p_k - 18.$

Proof. For any graph G, the algebraic connectivity $\lambda_{n-1}(G)$ and the vertex connectivity $\mathcal{K}(G)$ of G satisfies the inequality $\lambda_{n-1}(G) \leq \mathcal{K}(G)$ [6]. Using this fact and the upper bound obtained for $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$, where $n = \prod_{i=1}^5 p_i$, i = 1, 2, 3, 4, 5 are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5$ in proposition 2, we can conclude the result.

Proposition 3. For $n = \prod_{i=1}^{6} p_i$, where p_i , i = 1, 2, 3, 4, 5, 6 are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5 < p_6$, the vertex connectivity $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + \sum_{i=1}^{6} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{5,6} p_i p_j + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} p_i p_j p_k + \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k}}^{2,3,4,5} p_i p_j p_k p_l - 45.$

Proof. Let S be the subset of \mathbb{Z}_n consisting of $\bar{0}$ and all the generators, $P_1 = \{a_1\bar{p_1} \in V(\mathcal{P}(\mathbb{Z}_n));$ $p_2, p_3, p_4, p_5, p_6 \nmid a_1\}, P_2 = \{a_2\bar{p_2} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \nmid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \nmid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \nmid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \nmid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \nmid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_3, p_4, p_5, p_6 \mid a_2\}, P_3 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_4, p_6 \mid a_2\}, P_4 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_4, p_6 \mid a_2\}, P_5 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); p_6 \mid a_2\}, P_6 = \{a_3\bar{p_3} \in V(\mathcal{P}(\mathbb{Z}_n))\}\}$ $\{p_1, p_2, p_4, p_5, p_6 \nmid a_3\}, P_4 = \{a_4\bar{p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \nmid a_4\}, P_5 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_6 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_6 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_6 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_7 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_5, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_6 \mid a_4\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, P_8 = \{a_5\bar{p_5} \in V(\mathcal{P}(\mathbb{Z}_n)\}, P_8 \in V(\mathcal{P}(\mathbb$ $p_3, p_4, p_6 \nmid a_5\}, P_6 = \{a_6\bar{p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); p_1, p_2, p_3, p_4, p_5 \nmid a_6\}, U_{12} = \{u_{12}\bar{p_1p_2} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < 0\}$ $u_{12} \le p_3 p_4 p_5 p_6 - 1$, $U_{13} = \{u_{13} \overline{p_1 p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{13} \le p_2 p_4 p_5 p_6 - 1$, $U_{14} = \{u_{14} \overline{p_1 p_4} \in P_1 \}$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{14} \le p_2 p_3 p_5 p_6 - 1\}, U_{15} = \{u_{15} \overline{p_1 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{15} \le p_2 p_3 p_4 p_6 - 1\}, U_{16} = p_2 p_3 p_4 p_6 - 1\}$ $\{u_{16}\overline{p_{1}p_{6}} \in V(\mathcal{P}(\mathbb{Z}_{n})); \ 0 < u_{16} \leq p_{2}p_{3}p_{4}p_{5} - 1\}, U_{23} = \{u_{23}\overline{p_{2}p_{3}} \in V(\mathcal{P}(\mathbb{Z}_{n})); \ 0 < u_{23} \leq u_{23}\}$ $p_1p_4p_5p_6-1$, $U_{24}=\{u_{24}\overline{p_2p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< u_{24}\leq p_1p_3p_5p_6-1\}, U_{25}=\{u_{25}\overline{p_2p_5}\in \mathcal{P}(\mathbb{Z}_n)\}$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{25} \le p_1 p_3 p_4 p_6 - 1\}, U_{26} = \{u_{26} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{26} \le p_1 p_3 p_4 p_5 - 1\}, U_{34} = \{u_{26} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{26} \le p_1 p_3 p_4 p_5 - 1\}, U_{34} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{26} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{26} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{26} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_3 p_4 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1 p_5 - 1\}, U_{36} = \{u_{36} \overline{p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{36} \le p_1$ $\{u_{34}\overline{p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{34} \leq p_1p_2p_5p_6 - 1\}, U_{35} = \{u_{35}\overline{p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{35} \leq u_{35}$ $p_1p_2p_4p_6 - 1$, $U_{36} = \{u_{36}\overline{p_3p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_{36} \leq p_1p_2p_4p_5 - 1$, $U_{45} = \{u_{45}\overline{p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < u_{36} \leq p_1p_2p_4p_5 - 1$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{45} \le p_1 p_2 p_3 p_6 - 1\}, U_{46} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_3 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{46} \le p_1 p_2 p_5 - 1\}, U_{56} = \{u_{46} \overline{p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n))\}, U_{56} = \{u_{4$ $\{u_{56}\overline{p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < u_{56} \le p_1p_2p_3p_4 - 1\}, T_{123} = \{t_{123}\overline{p_1p_2p_3} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{123} \le t_{123}\}$ $p_4p_5p_6-1\}, T_{124}=\{t_{124}\overline{p_1p_2p_4}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< t_{124}\leq p_3p_5p_6-1\}, T_{125}=\{t_{125}\overline{p_1p_2p_5}\in \mathcal{P}(\mathbb{Z}_n)\}$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{125} \le p_3 p_4 p_6 - 1\}, T_{126} = \{t_{126} \overline{p_1 p_2 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{126} \le p_3 p_4 p_5 - p_6 p_6 = 0\}$ 1}, $T_{134} = \{t_{134}\overline{p_1p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{134} \le p_2p_5p_6 - 1\}, T_{135} = \{t_{135}\overline{p_1p_3p_5} \in V(\mathcal{P}(\mathbb{Z}_n))\}, T_{$ $t_{135} \le p_2 p_4 p_6 - 1\}, T_{136} = \{t_{136} \overline{p_1 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{136} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{145} \overline{p_1 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_4 p_5 - 1\}, T_{145} = \{t_{1$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{145} \le p_2 p_3 p_6 - 1\}, T_{146} = \{t_{146} \overline{p_1 p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{146} \le p_2 p_3 p_5 - 1\}$ 1}, $T_{156} = \{t_{156}\overline{p_1p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < t_{156} \le p_2p_3p_4 - 1\}, T_{234} = \{t_{234}\overline{p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n))\}, T_{234} = \{t_{234}\overline{p_2p_4} \in V(\mathcal{P}(\mathbb{Z}_n)\}, T_{234}$ $t_{234} \le p_1 p_5 p_6 - 1\}, T_{235} = \{t_{235} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{236} \overline{p_2 p_3 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{235} \le p_1 p_4 p_6 - 1\}, T_{236} = \{t_{2$ $1\}, T_{246} = \{t_{246}\overline{p_2p_4p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{246} \le p_1p_3p_5 - 1\}, T_{256} = \{t_{256}\overline{p_2p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n))\}, T_{256} = \{t$ $t_{256} \le p_1 p_3 p_4 - 1\}, T_{345} = \{t_{345} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{346} = \{t_{346} \overline{p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{345} \le p_1 p_2 p_6 - 1\}, T_{345} = \{t_{3$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{346} \le p_1 p_2 p_5 - 1\}, T_{356} = \{t_{356} \overline{p_3 p_5 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{356} \le p_1 p_2 p_4 - p_5 p_6 \}$ 1, $T_{456} = \{t_{456}\overline{p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < t_{456} \le p_1p_2p_3 - 1\}, L_{1234} = \{l_{1234}\overline{p_1p_2p_3p_4} \in V(\mathcal{P}(\mathbb{Z}_n))\}$ $0 < l_{1234} \le p_5 p_6 - 1$, $L_{1235} = \{l_{1235} \overline{p_1 p_2 p_3 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1235} \le p_4 p_6 - 1$, $L_{1236} = p_4 p_6 - 1$ $\{l_{1236}\overline{p_1p_2p_3p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1236} \le p_4p_5 - 1\}, L_{1245} = \{l_{1245}\overline{p_1p_2p_4p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1236}\overline{p_1p_2p_4p_5} = V(\mathcal{P}(\mathbb{Z}_n)); \ 0$ $l_{1245} \le p_3 p_6 - 1\}, L_{1246} = \{l_{1246} \overline{p_1 p_2 p_4 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1246} \le p_3 p_5 - 1\}, L_{1256} = \{l_{1256} \overline{p_1 p_2 p_5 p_6}, p_{1256} \in V(\mathcal{P}(\mathbb{Z}_n))\}$ $\in V(\mathcal{P}(\mathbb{Z}_n)); 0 < l_{1256} \leq p_3 p_4 - 1\}, L_{1345} = \{l_{1345} \overline{p_1 p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < l_{1345} \leq l_{1345}$ $p_2p_6-1\}, L_{1346}=\{l_{1346}\overline{p_1p_3p_4p_6}\in V(\mathcal{P}(\mathbb{Z}_n));\ 0< l_{1346}\leq p_2p_5-1\}, L_{1356}=\{l_{1356}\overline{p_1p_3p_5p_6}\in P_1(\mathbb{Z}_n)\}$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{1356} \le p_2 p_4 - 1\}, L_{2345} = \{l_{2345} \overline{p_2 p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{2345} \le p_1 p_6 - 1\}$ 1}, $L_{2346} = \{l_{2346}\overline{p_2p_3p_4p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < l_{2346} \le p_1p_5 - 1\}, L_{2356} = \{l_{2356}\overline{p_2p_3p_5p_6} \in \mathcal{P}(\mathbb{Z}_n)\}$ $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{2356} \le p_1 p_4 - 1\}, L_{2456} = \{l_{2456} \overline{p_2 p_4 p_5 p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < l_{2456} \le p_1 p_3 - 1\}$ 1, $L_{3456} = \{l_{3456}\overline{p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < l_{3456} \le p_1p_2 - 1\}, L_{1456} = \{l_{1456}\overline{p_1p_4p_5p_6} \in \mathcal{P}(\mathbb{Z}_n)\}$ $V(\mathcal{P}(\mathbb{Z}_n)); 0 < l_{1456} \leq p_2 p_3 - 1$, $J_{12345} = \{j_{12345} \overline{p_1 p_2 p_3 p_4 p_5} \in V(\mathcal{P}(\mathbb{Z}_n)); 0 < j_{12345} \leq p_2 p_3 - 1$ $p_6 - 1$, $J_{12346} = \{j_{12346}\overline{p_1p_2p_3p_4p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{12346} \le p_5 - 1\}$, $J_{12356} = \{j_{12356}\overline{p_1p_2p_3p_5p_6}\}$ $\in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{12356} \le p_4 - 1\}, J_{12456} = \{j_{12456}\overline{p_1p_2p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{12456} \le p_3 - 1\}$ 1}, $J_{13456} = \{j_{13456}\overline{p_1p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{13456} \le p_2 - 1\}, J_{23456} = \{j_{23456}\overline{p_2p_3p_4p_5p_6} \in V(\mathcal{P}(\mathbb{Z}_n))\}$

 $V(\mathcal{P}(\mathbb{Z}_n)); \ 0 < j_{23456} \leq p_1 - 1\}$ be pairwise disjoint sets of vertices of $\mathcal{P}(\mathbb{Z}_n)$ whose union is $V(\mathcal{P}(\mathbb{Z}_n))$. Even though every vertex of the set S is adjacent to all other vertices of $\mathcal{P}(\mathbb{Z}_n)$,

$$V(\mathcal{P}(\mathbb{Z}_n))$$
. Even though every vertex of the set S is adjacent to all other vertices of $\mathcal{P}(\mathbb{Z}_n)$, $\mathcal{P}(\mathbb{Z}_n)-S$ is connected. Moreover, $\mathcal{P}(\mathbb{Z}_n)-S-\sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6}T_{ijk}-\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6}J_{ijklm}$ is also connected. The connectedness diagram of $\mathcal{P}(\mathbb{Z}_n)-S-\sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6}T_{ijk}-\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l=1,2,3}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l=1,2,3}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l=1,2,3}}^{3,4,5,6}L_{ijkl}-\sum_{\substack{i,j,k,l=1,2,3}}^{3,4,5,6}L_{ijkl}-\sum$

 $\sum_{i,j,k,l,m=1,2,3,4,5}^{2,3,4,5} J_{ijklm}$ can be obtained as shown in Figure 3. Now to make the graph $\mathcal{P}(\mathbb{Z}_n)$ –

$$S - \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} T_{ijk} - \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6} L_{ijkl} - \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6} J_{ijklm} \text{ disconnected, we need to remove}$$

the five sets from U_{ij} , where $i=1,2,\ldots,5,\ j=2,\ldots,6, i\neq j$ which are adjacent to the same $P_i, i = 1, 2, ..., 6$. To make the upper bound of $\mathcal{P}(\mathbb{Z}_n)$ sharp, we need to remove

the sets $U_{46}, U_{26}, U_{36}, U_{56}, U_{16}$ with minimum cardinality from $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{i,j,k=1,2,3}^{4,5,6} T_{ijk} - \sum_{i,j,k=1,2}^{4,5,6} T_{ijk} - \sum_{i,j,k=1,2}$

$$\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6} L_{ijkl} - \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6} J_{ijklm}.$$
 Therefore the graph

$$\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6}L_{ijkl} - \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6}J_{ijklm}. \text{ Therefore the graph}$$

$$\mathcal{P}(\mathbb{Z}_n) - S - \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6}T_{ijk} - \sum_{\substack{i,j,k,l=1,2,3\\i\neq j\neq k\neq l}}^{3,4,5,6}L_{ijkl} - \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6}J_{ijklm} - U_{46} - U_{26} - U_{36} - U_{16}$$
 is disconnected and thus
$$4,5,6$$

$$3,4,5,6$$

$$2,3,4,5,6$$

$$\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq |S| + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} |T_{ijk}| + \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6} |L_{ijkl}| + \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6} |J_{ijklm}| + |U_{46}| + |U_{26}| + |U_{26}|$$

is disconnected and thus
$$\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) \leq |S| + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{i\neq j\neq k} |T_{ijk}| + \sum_{\substack{i,j,k,l=1,2,3\\i\neq j\neq k\neq l}}^{3,4,5,6} |L_{ijkl}| + \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6} |J_{ijklm}| + |U_{46}| + |U_{26}| + |U_{36}| + |U_{56}| + |U_{16}| = \phi(n) + \sum_{\substack{i=1\\i\neq j}}^{6} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{5,6} p_i p_j + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} p_i p_j p_k + \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{2,3,4,5} p_i p_j p_k p_l - 45.$$

Corollary 3. For $n = \prod_{i=1}^{6} p_i$, where p_i , i = 1, 2, 3, 4, 5, 6 are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5 < p_6$, the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ of $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \le \phi(n) + \sum_{i=1}^{6} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{5,6} p_i p_j + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} p_i p_j p_k + \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{2,3,4,5} p_i p_j p_k p_l - 45.$

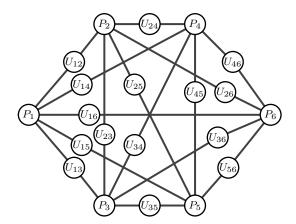


Figure 3: Connectedness diagram of $\mathcal{P}(\mathbb{Z}_n) - S - \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{4,5,6} T_{ijk} - \sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{3,4,5,6} L_{ijkl} - \sum_{\substack{i,j,k,l,m=1,2,3,4,5\\i\neq j\neq k\neq l\neq m}}^{2,3,4,5,6} J_{ijklm}$, where $n = \prod_{i=1}^{6} p_i$

Proposition 4. Let $n = \prod_{i=1}^{4} p_i$, where p_i , i = 1, 2, 3, 4 are distinct primes with $p_1 < p_2 < p_3 < p_4$. Then the vertex connectivity $\mathcal{K}(\mathcal{P}(G))$ of $\mathcal{P}(G)$, where G is a finite abelian group of order n satisfies the inequality $\mathcal{K}(\mathcal{P}(G)) \leq \phi(n) + \sum_{i=1}^{4} p_i + \sum_{\substack{i,j=1,2\\i\neq i}}^{2,3} p_i p_j - 6$.

Proof. Let G be a finite abelian group of order $n = \prod_{i=1}^4 p_i$, where $p_i, i = 1, 2, 3, 4$ are distinct primes with $p_1 < p_2 < p_3 < p_4$. By the Fundamental Theorem of finite abelian groups [7], G is isomorphic to the direct product $\mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \mathbb{Z}_{p_3} \oplus \mathbb{Z}_{p_4}$. Since $p_i's$ are distinct primes, $\mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \mathbb{Z}_{p_3} \oplus \mathbb{Z}_{p_4}$ is isomorphic to $\mathbb{Z}_{p_1p_2p_3p_4}$. Thus G is isomorphic to $\mathbb{Z}_{p_1p_2p_3p_4}$. Hence the result, by Proposition 1.

Corollary 4. Let $n = \prod_{i=1}^{4} p_i$, where p_i , i = 1, 2, 3, 4 are distinct primes with $p_1 < p_2 < p_3 < p_4$. Then the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(G))$ of $\mathcal{P}(G)$, where G is a finite abelian group of order n satisfies the inequality $\lambda_{n-1}(\mathcal{P}(G)) \leq \phi(n) + \sum_{i=1}^{4} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{2,3} p_i p_j - 6$.

Proof. For any graph G, the algebraic connectivity $\lambda_{n-1}(G)$ and the vertex connectivity $\mathcal{K}(G)$ of G satisfies the inequality $\lambda_{n-1}(G) \leq \mathcal{K}(G)$ [6]. Using this fact and the proposition 4, we can conclude the result.

On the similar lines, we can prove the following Propositions 5, 6 and their respective corollaries 5, 6.

Proposition 5. Let $n = \prod_{i=1}^{5} p_i$, where $p_i, i = 1, 2, ..., 5$ are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5$. Then the vertex connectivity $\mathcal{K}(\mathcal{P}(G))$ of $\mathcal{P}(G)$, where G is a finite abelian group of order n satisfies the inequality $\mathcal{K}(\mathcal{P}(G)) \leq \phi(n) + \sum_{i=1}^{5} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{4,5} p_i p_j + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{2,3,4} p_i p_j p_k - 18$.

Corollary 5. Let $n = \prod_{i=1}^{5} p_i$, where $p_i, i = 1, 2, ..., 5$ are distinct primes with $p_1 < p_2 < p_3 < p_4 < p_5$. Then the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(G))$ of $\mathcal{P}(G)$, where G is a finite abelian group of order n satisfies the inequality $\lambda_{n-1}(\mathcal{P}(G)) \leq \phi(n) + \sum_{i=1}^{5} p_i + \sum_{\substack{i,j=1,2\\i\neq j}}^{4,5} p_i p_j + \sum_{\substack{i,j,k=1,2,3\\i\neq j\neq k}}^{2,3,4} p_i p_j p_k - 18$.

$$\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{2,3,4,5} p_i p_j p_k p_l - 45.$$

$$\sum_{\substack{i,j,k,l=1,2,3,4\\i\neq j\neq k\neq l}}^{2,3,4,5} p_i p_j p_k p_l - 45.$$

Proposition 7 ([4]). For any integer $n \geq 2$, if n is a prime power or the product of two primes, then a power graph $\mathcal{P}(\mathbb{Z}_n)$ is a Laplacian integral.

Proposition 8. For any integer $n \geq 2$, if a power graph $\mathcal{P}(\mathbb{Z}_n)$ is a Laplacian integral, then the algebraic connectivity of a power graph $\mathcal{P}(\mathbb{Z}_n)$ is an integer.

Proof. The algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is the second smallest Laplacian eigenvalue of $\mathcal{P}(\mathbb{Z}_n)$. Moreover, $\mathcal{P}(\mathbb{Z}_n)$ is Laplacian integral if and only if each of it's Laplacian eigenvalue is an integer. Hence the result.

Proposition 9. For any integer $n \geq 2$, if n is a prime power or the product of two primes, then the algebraic connectivity of a power graph $\mathcal{P}(\mathbb{Z}_n)$ is an integer.

Proof. If n is a prime power, then $\mathcal{P}(\mathbb{Z}_n)$ is Laplacian integral, by Theorem 1. Hence the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is an integer. Also, if n is the product of two distinct primes, then $\mathcal{K}(\mathcal{P}(\mathbb{Z}_n)) = \lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$, which is an integer, by Theorem 5. Hence the result.

Proposition 10. For any integer $n \geq 2$, if the algebraic connectivity of a power graph $\mathcal{P}(\mathbb{Z}_n)$ is an integer, then n is a prime power or the product of two primes.

Proof. Assume that the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is an integer for all values of n. If n is a prime power or the product of two primes, then the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is an integer, see Proposition 9. Let us consider values of n, where n is neither a prime power nor the product of two primes. Then n will include the values of the form $p^{\alpha}q^{\beta}$, with $\alpha, \beta \geq 1$, but not both equal to 1. Thus $\phi(n) + 1 < \lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) < \phi(n) + p^{\alpha-1}q^{\beta-1}$, by Theorem 3,4. Thus $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ is not necessarily an integer. In particular, if we consider n = 12, then $5 < \lambda_{n-1}(\mathcal{P}(\mathbb{Z}_{12})) < 6$, which is not an integer. Therefore we get a contradiction to our assumption. Hence the result.

Example 1. Consider $\mathcal{P}(\mathbb{Z}_{18})$. The Laplacian characteristic polynomial of $\mathcal{P}(\mathbb{Z}_{18})$ is given by

$$\Theta(\mathcal{P}(\mathbb{Z}_{18}), x) = \frac{x(x - 18)^7}{(x - 7)} \Theta(L_{\bar{0}, \bar{1}, \bar{5}, \bar{7}, \bar{11}, \bar{13}, \bar{17}}(\mathcal{P}(\mathbb{Z}_{18})), x) \tag{1}$$

Example 2. Using the same method as that of example 1, the Laplacian spectrum of $\mathcal{P}(\mathbb{Z}_{12})$ is obtained as

$$\begin{pmatrix} 12 & 10.68 & 10 & 9 & 8.64 & 8 & 5.67 & 0 \\ 5 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

. Thus we conclude that the algebraic connectivity of $\mathcal{P}(\mathbb{Z}_{12})$ is 5.67, which is not an integer. Moreover, $\mathcal{P}(\mathbb{Z}_{12})$ is not a Laplacian integral.

Using propositions 7, 8, 9 and 10, we can conclude the following conjecture posed in [11]; For any integer $n \ge 2$, the following statements are equivalent:

- (i) The algebraic connectivity of $\mathcal{P}(\mathbb{Z}_n)$ is an integer.
- (ii) $\mathcal{P}(\mathbb{Z}_n)$ is Laplacian integral.
- (iii) n is a prime power or product of two primes.

3 Conclusion

In this article, we have obtained the upper bounds for the algebraic and the vertex connectivity of $\mathcal{P}(\mathbb{Z}_n)$, where n is a product of 4,5 and 6 distinct primes. Moreover, we proved the equivalent conditions for $\mathcal{P}(\mathbb{Z}_n)$ to be Laplacian integral and hence settled the conjecture posed in [11]. Based on our observations, we state the following for \mathbb{Z}_n :

Conjecture 1. Let $n = \prod_{j=1}^k p_{i_j}$, where $p_{i_{m_1}} < p_{i_{m_2}}$ for $m_1 < m_2$ are distinct primes and $k, m_1, m_2 \in \mathbb{N}$. Then the algebraic connectivity $\lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n))$ of power graph $\mathcal{P}(\mathbb{Z}_n)$ satisfies the inequality

$$\begin{aligned} & nequality \\ & \lambda_{n-1}(\mathcal{P}(\mathbb{Z}_n)) \leq \phi(n) + 1 + \sum_{j=1}^k p_{i_j} - \binom{k}{1} + \sum_{\substack{j_1, j_2 = 1, 2 \\ j_1 \neq j_2}}^{k-1, k} p_{i_{j_1}} p_{i_{j_2}} - \binom{k}{2} + \sum_{\substack{j_1, j_2, j_3 = 1, 2, 3 \\ j_1 \neq j_2 \neq j_3}}^{k-2, k-1, k} p_{i_{j_1}} p_{i_{j_2}} p_{i_{j_3}} - \binom{k}{3} + \\ & \dots + \sum_{\substack{j_1, j_2, \dots, j_{k-3} = 1, 2, \dots, k-3 \\ j_1 \neq j_2 \neq \dots \neq j_{k-3}}}^{4, 5, \dots, k} p_{i_{j_1}} p_{i_{j_2}} \cdots p_{i_{j_{k-3}}} - \binom{k}{k-3} + \sum_{\substack{j_1, j_2, \dots, j_{k-2} = 1, 2, \dots, k-2 \\ j_1 \neq j_2 \neq \dots \neq j_{k-2}}}^{2, 3, \dots, k-1} p_{i_{j_1}} p_{i_{j_2}} \cdots p_{i_{j_{k-2}}} - (k-1) \\ & 1). \end{aligned}$$

The eigenvalues of the matrices in example 1 and 2 are calculated using WX-Maxima.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- [1] J. Abawajy, A. Kelarev and M. Chowdhury, *Power graphs: a survey*, Electronic Journal of Graph Theory and Applications, (2) 1 (2013), 125-147.
- [2] B. Bollobas, Modern graph theory, Springer, 2013.
- [3] I. Chakrabarty, S. Ghosh and M. K. Sen, *Undirected power graphs of semigroups*, Semigroup Forum, **78** (2009), 410-426.
- [4] S. Chattopadhyay and P. Panigrahi, On laplacian spectrum of power graphs of finite cyclic and dihedral groups, Linear and Multilinear Algebra, 63 (2014), 1345-1355.
- [5] D. Cvetkovic, P. Rowlinson and S. Simic, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts, Cambridge University Press, **75** (2010).
- [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, (2) 23 (1973), 298-305.
- [7] J. A. Gallian, Contemporary Abstract Algebra, Taylor and Francis Group 2002.
- [8] A. Kelarev and S. Quinn, *Directed graphs and combinatorial properties of semigroups*, Journal of Algebra, (1) **251** (2002), 16-26.
- [9] A. Kumar, L. Selvaganesh, P. J. Cameron and T. Chelvam, Recent developments on the power graph of finite groups- a survey, AKCE International Journal of Graphs and Combinatorics, (2) 18 (2021), 65-94.
- [10] B. Mohar, Y. Alavi, G. Chartrand, O. Oellermann and A. Schwenk, *The laplacian spectrum of graphs*, Graph Theory, Combinatorics and Applications, 2 (1991), 871-898.
- [11] R. P. Panda, Laplacian spectra of power graphs of certain finite groups, Graphs and Combinatorics, **35** (2019), 1209-1223.