| تعداد نشریات | 32 |
| تعداد شمارهها | 814 |
| تعداد مقالات | 7,878 |
| تعداد مشاهده مقاله | 36,681,193 |
| تعداد دریافت فایل اصل مقاله | 8,302,960 |
An approximation technique for a system of time-fractional differential equations arising in population dynamics | ||
| Journal of Mathematical Modeling | ||
| مقاله 2، دوره 13، شماره 3، مهر 2025، صفحه 519-531 اصل مقاله (275.75 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2025.28718.2548 | ||
| نویسندگان | ||
| Jugal Mohapatra* 1؛ Siba Prasad Mohapatra2؛ Anasuya Nath3 | ||
| 1Department of Mathematics, National Institute of Technology Rourkela, India | ||
| 2Department of Mathematics, Konark Institute of Science and Technology, India | ||
| 3Department of Mathematics, Utkal University, Bhubaneswar, India | ||
| چکیده | ||
| In this work, we develop and analyze an approximation technique for the system of time-fractional nonlinear differential equations arising in population dynamics. The fractional of order $ \sigma\in(0,1) $ is taken in the Caputo sense. The proposed technique uses L1 discretization on the uniform mesh to approximate the differential operator. The fractional model is transformed into a system of nonlinear algebraic equations. The generalized Newton-Raphson method is employed to solve the corresponding nonlinear system. A rigorous error estimation is presented. It is shown that the proposed scheme achieved $ (2-\sigma) $ order of accuracy. Lastly, numerical experiment is conducted to demonstrate the validity of the proposed technique. | ||
| کلیدواژهها | ||
| System of fractional model؛ Caputo derivative؛ L1 scheme؛ error analysis | ||
|
آمار تعداد مشاهده مقاله: 243 تعداد دریافت فایل اصل مقاله: 375 |
||