
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,084 |
تعداد دریافت فایل اصل مقاله | 7,149,689 |
An approximation technique for a system of time-fractional differential equations arising in population dynamics | ||
Journal of Mathematical Modeling | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 26 بهمن 1403 اصل مقاله (275.75 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2025.28718.2548 | ||
نویسندگان | ||
Jugal Mohapatra* 1؛ Siba Prasad Mohapatra2؛ Anasuya Nath3 | ||
1Department of Mathematics, National Institute of Technology Rourkela, India | ||
2Department of Mathematics, Konark Institute of Science and Technology, India | ||
3Department of Mathematics, Utkal University, Bhubaneswar, India | ||
چکیده | ||
In this work, we develop and analyze an approximation technique for the system of time-fractional nonlinear differential equations arising in population dynamics. The fractional of order $ \sigma\in(0,1) $ is taken in the Caputo sense. The proposed technique uses L1 discretization on the uniform mesh to approximate the differential operator. The fractional model is transformed into a system of nonlinear algebraic equations. The generalized Newton-Raphson method is employed to solve the corresponding nonlinear system. A rigorous error estimation is presented. It is shown that the proposed scheme achieved $ (2-\sigma) $ order of accuracy. Lastly, numerical experiment is conducted to demonstrate the validity of the proposed technique. | ||
کلیدواژهها | ||
System of fractional model؛ Caputo derivative؛ L1 scheme؛ error analysis | ||
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 32 |