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Abstract. In this work, we develop and analyze an approximation technique for the system of time-
fractional nonlinear differential equations arising in population dynamics. The fractional of order σ ∈
(0,1) is taken in the Caputo sense. The proposed technique uses L1 discretization on the uniform mesh
to approximate the differential operator. The fractional model is transformed into a system of nonlinear
algebraic equations. The generalized Newton-Raphson method is employed to solve the corresponding
nonlinear system. A rigorous error estimation is presented. It is shown that the proposed scheme achieved
(2−σ) order of accuracy. Lastly, numerical experiment is conducted to demonstrate the validity of the
proposed technique.
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1 Introduction

Fractional calculus is a generalization of differentiation and integration to non-integer orders. The con-
cept of fractional calculus dates back to the origins of calculus itself. The idea was first mentioned
in a letter from L’Hopital to Leibniz in 1695, where L’Hopital inquired about the meaning of a half-
order derivative. Over the centuries, mathematicians made significant contributions to formalize and
expand the theory of fractional calculus. In this regard, fractional order differential equations (FDEs)
provide a powerful framework for modeling systems with memory and hereditary properties. Their ap-
plications span a wide range of fields such as physics, mechanics, chemistry, and engineering, offering
more accurate and flexible models compared to traditional integer-order differential equations (see for
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applications [2, 4, 6, 8, 9]). Despite the challenges in solving and interpreting these equations, their ben-
efits in capturing the complexity of real-world phenomena make them an important area of research and
application.

The present work consider the following system of time-fractional differential equations:{
Dσ

t W (t) = G(t,W (t)) for t ∈ (0,T ],

W (0) = χ,
(1)

where Dσ
t denotes the Caputo fractional operator,

W (t) =
[X(t)

Y (t)

]
, G(t,W (t)) =

[G1(t,X(t),Y (t))

G2(t,X(t),Y (t))

]
,

and χ = [η ,ζ ] is a Lipschitz continuous function. η ,ζ are prescribed real constants. If

G =
[ a(t)X(t)−b(t)X(t)Y (t)

c(t)X(t)Y (t)−d(t)Y (t)

]
,

then (1) is known as time-fractional Lotka-Volterra model, which is the generalization of the classical
Lotka-Volterra model arising in population dynamics. In this case, the unknown variable X(t), called
prey and Y (t), called predator, represents the number of individuals or population density in species X
and Y respectively in a habitat at time t. The competition coefficients a,b,c,d are positive and smooth
functions describe the interaction rates. The Lotka-Volterra model, also known as the predator-prey
model, is a fundamental concept in ecological and mathematical biology. Developed independently by
Alfred J. Lotka [16] in 1925 and Vito Volterra [18] in 1926, this model describes the dynamics between
two interacting species: a predator and its prey. The Lotka-Volterra model’s principles apply broadly
beyond ecology, including in economics to model competition between companies and in epidemiology
to describe the spread of diseases, chemical reactions, dynamic systems, laser and plasma physics, and
control system theory; see [10] and the references therein. The fractional model can describe the memory
properties of biological systems better than the usual classical model.

Finding the exact solutions of the fractional order system is rarely accessible and usually compli-
cated because of its nonlinear and nonlocal nature. Consequently, suitable work has been done on the
development of the numerical and semi-analytical techniques to find the desired approximate solution.
In [13], Lin and Liu presented higher-order multiple step methods for nonlinear fractional-order ordi-
nary differential equations. Das and Gupta employed the homotopy perturbation method to obtain an
approximate analytic solution of the fractional order LotkaVolterra equations in [3]. Li and Zeng studied
stability and convergence analysis based on the generalized discrete Gronwall inequality for the frac-
tional order Euler, Adams high order methods in [12] for solving nonlinear equations involving nonlocal
derivatives. In [19], Yan et al. constructed higher-order numerical methods to solve nonlinear frac-
tional differential equations. They used two different approaches: direct discretization and discretization
of the integral form. The stability analysis was presented using sufficiently smooth initial data. Li et
al. [11] analyzed predictorcorrector based finite difference schemes on non-uniform meshes for solving
nonlinear fractional differential equations. In [1], Alqudah et al. presented existence theory and an ap-
proximate analytical solution using the Adomian decomposition method for a coupled nonlinear system
involving a nonsingular kernel. Jafari et al., in [7], proposed a numerical scheme based on the three-step
Adams-Bashforth method to obtain a numerical solution of the fractional order population dynamics
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models. Recently, an efficient finite difference scheme on a non-uniform mesh for the time-fractional
LotkaVolterra competitive model involving singularity is presented in [5].

From the said literature, one can observe that an efficient numerical technique for the fractional order
nonlinear system is not so enriched. In this article, we propose an efficient finite difference scheme to
approximate the nonlinear system (1) involving arbitrary order derivative. The L1 formula is used to dis-
cretize the fractional operator on uniform mesh. The generalized Newton-Raphson method is employed
to solve the corresponding nonlinear system. The global error analysis is established and measured
in terms of the discrete maximum norm. It is shown that the proposed technique achieves its optimal
(2−σ) order of convergence. The theoretical estimation and illustrative test examples demonstrate the
deficiency of the proposed method. The solution methodology and its supporting analysis are the main
novelty of this study. The rest of the paper is listed as follows: In Section 2, we elaborate on some basic
definitions of fractional calculus and solution properties of the model problem. Section 3 constructs the
numerical scheme to solve (1). Section 4 deals with the error analysis of the proposed approach and
illustrates the test example. Finally, concluding remarks are given in Section 5.

Notation: Ck(D) denotes the space of k’th order continuously differentiable real-valued functions on
a domain D, use C(D) for C0(D). Set φi = φ(ti) for any function φ defined on a domain D. Define the
discrete maximum norm by ||φ ||∞ = max

i
|φ(ti)|. In several inequalities, C denotes a generic positive

constant which has different values at different occurrences.

2 Definitions and notations

The following definitions and properties will be useful for this work. For more details one may refer
[4, 17].

Definition 1. Let φ(x) ∈ C[a,b]. The Riemann-Liouville fractional integral of order ν ∈ R+ of φ(x) is
defined by:

Jν
t φ(x) :=

1
Γ(ν)

∫ x

a
(x− t)ν−1

φ(t)dt.

Γ(·) being Euler’s gamma function.

Definition 2. Let n−1 < ν ≤ n,n ∈N. The Caputo fractional derivative of order ν ∈R+ of the function
φ(x) ∈ Cn[a,b], is defined by:

Dν
t φ(x) := Jn−ν

t φ
(n)(x) =


1

Γ(n−ν)

∫ x

a
(x− t)n−ν−1

φ
(n)(t)dt, if n−1 < ν < n,

φ (n)(x), if ν = n.

Definition 3. The two parameters β ,γ > 0 Mittag-Leffler function is defined by:

Eβ ,γ(z) =
∞

∑
k=0

zk

Γ(βk+ γ)
, z ∈ C.

The following are some basic properties of the fractional calculus:
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1. For x ∈ [a,b], m−1 < ν ≤ m, we have

Dν
x Jν

x ϕ(x) = ϕ(x) and Jν
x Dν

x ϕ(x) = ϕ(x)−
n−1

∑
k=0

ϕ
(k)(a+)

(x−a)k

k!
, x > a.

2. For m−1 < σ̃ ≤ m, m ∈ N, we have

D σ̃
x (x−a)ν =


Γ(ν +1)

Γ(ν− σ̃ +1)
xν−σ̃ , if ν > m−1,

0, if ν ∈ {0,1, . . . ,m−1}.

3. D σ̃
x eλ (x−a) = λ m(x−a)m−σ̃ E1,m−σ̃+1(λ (x−a)) for any λ ∈ C and m−1 < σ̃ ≤ m, m ∈ N.

2.1 Regularity of the solution

Definition 4. The column vector W (t) ∈ C[0,T ] means each components X(t), Y (t) ∈ C[0,T ]. The norm
of W (t) is define by

‖W (t)‖= sup
t∈[0,T ]

|X(t)|+ sup
t∈[0,T ]

|Y (t)|.

Lemma 1. If G(t,W (t)) bounded continuous vector valued function and satisfies Lipschitz condition
with respect to W (t) i.e., there is a positive constant L independent of t,Z1(t),Z2(t) such that

‖G(t,Z1(t))−G(t,Z2(t))‖ ≤ L‖Z1(t)−Z2(t)‖,

then the initial value problem (1) has a unique solution.

Proof. One can find the detailed proof in Theorem 6.1, 6.5 and 6.28 of [4].

3 The discretized problem

In this section, we derived an approximation scheme on a uniform mesh for (1) by combining the L1
technique and Newton-Raphson method. Consider N be a positive integer and construct a uniform grid
{t j = jτ for j = 0,1, . . . ,N} with step length τ = T/N. The Caputo fractional derivative Dσ

t X(t) at t j

for j = 1,2, . . . ,N can be written as

Dσ
t X(t j) =

1
Γ(1−σ)

j−1

∑
k=0

tk+1∫
s=tk

(t j− s)−σ X ′(s)ds,
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which can be approximated using L1 scheme [14] as

Dσ
N X(t j) =

1
Γ(1−σ)

j−1

∑
k=0

X(tk+1)−X(tk)
τ

tk+1∫
s=tk

(t j− s)−σ ds

=
τ−σ

Γ(2−σ)

j−1

∑
k=0

[
X(tk+1)−X(tk)

]
d j−k

=
τ−σ

Γ(2−σ)

[
X(t j)d1 +

j−1

∑
k=1

(
d j−k+1−d j−k

)
X(tk)−X(t0)d j

]
, (2)

where dp = p1−σ − (l− p)1−σ for p = 1,2, . . . ,N. The local truncation error ε
(1)
j =

(
Dσ

t −Dσ
N

)
X(t j).

Similarly, the L1 discretization of Dσ
t Y (t) at t j for j = 1,2, . . . ,N can be expressed as

Dσ
N Y (t j) =

τ−σ

Γ(2−σ)

j−1

∑
k=0

[
Y (tk+1)−Y (tk)

]
d j−k, (3)

with the local truncation error ε
(2)
j =

(
Dσ

t −Dσ
N

)
Y (t j). Using (2) and (3), the model (1) transformed to{

Dσ
N W (t j) = G(t j,W (t j))+E j, for j = 1,2, . . . ,N,

W (t0) = χ,
(4)

where E j = [ε
(1)
j ,ε

(2)
j ]T is the truncation error. Now, the difference equation (4) can be written as

Dσ
N X(t j) = G1(t j,X(t j),Y (t j))+ ε

(1)
j ,

Dσ
N Y (t j) = G2(t j,X(t j),Y (t j))+ ε

(2)
j ,

X(t0) = η , Y (t0) = ζ ,

(5)

for j = 1,2, . . . ,N. Neglecting the error term, the discrete problem (4) corresponding to (1) reduces to{
Dσ

N Wj = G(t j,Wj), for j = 1,2, . . . ,N,

W0 = χ,
(6)

and the corresponding discrete system (5) reduces to
F1(X j,Yj)≡

τ−σ

Γ(2−σ)
t j−G1(t j,X j,Yj)−

τ−σ

Γ(2−σ)

[
t j−1 +∑

j−2
k=0

(
Xk−Xk+1

)
d j−k

]
= 0,

F2(X j,Yj)≡
τ−σ

Γ(2−σ)
Yj−G2(t j,X j,Yj)−

τ−σ

Γ(2−σ)

[
Yj−1 +∑

j−2
k=0

(
Yk−Yk+1

)
d j−k

]
= 0,

X0 = η , Y0 = ζ ,

(7)

for j = 1,2, . . . ,N. Wj denotes the approximation value of W (t) at t = t j. Similar notation is used for X j

and Yj. Clearly, (7) is a nonlinear system of explicit algebraic equation. We can solve the above system of
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equations using standard Newton-Raphson method. Consider, [X (0)
j ,Y (0)

j ]T = [0,0]T be the initial guess.
Then after nth iteration, the approximate root of the system (7) isX (n)

j

Y (n)
j

=

X (n−1)
j

Y (n−1)
j

− J−1
(n−1)

F1(X
(n−1)
j ,Y (n−1)

j )

F2(X
(n−1)
j ,Y (n−1)

j )

 ,
where

J(p) =


τ−σ

Γ(2−σ)
− ∂G1

∂ s

(
t j,s,Y

(p)
j

)∣∣∣
s=X (p)

j

∂G1

∂ s

(
t j,X

(p)
j ,s

)∣∣∣
s=Y (p)

j

−∂G2

∂ s

(
t j,s,Y

(p)
j

)∣∣∣
s=X (p)

j

τ−σ

Γ(2−σ)
− ∂G2

∂ s

(
t j,X

(p)
j ,s

)∣∣∣
s=Y (p)

j

 .
Then the approximate solution of (1) for each j = 1,2, . . . ,N becomes[

X j

Yj

]
≈

X (n)
j

Y (n)
j

 .
The stopping criterion for the successive iteration is

∥∥W (n)
j −W (n−1)

j

∥∥≤ TOL.

4 Error analysis and numerical discussions

In this section, first, we establish the truncation error associated with approximating the Caputo fractional
derivative. Then, the accuracy of the proposed difference scheme is computed. Finally, numerical test
examples validate the theoretical result. All computations are implemented with MATLAB R2016a.

Lemma 2. Let X(t), Y (t) ∈ C2[0,T ], then for j = 1,2, . . . ,N,∣∣ε(i)
j

∣∣≤CN−(2−σ), for i = 1,2.

Proof. Using definition∣∣ε(1)
j

∣∣= ∣∣(Dσ
t −Dσ

N )X(t j)
∣∣

=

∣∣∣∣∣ 1
Γ(1−σ)

j−1

∑
k=0

tk+1∫
s=tk

(t j− s)−σ

[
X ′(s)− X(tk+1)−X(tk)

τ

]
ds

∣∣∣∣∣
≤C

∣∣∣∣∣ 1
Γ(1−σ)

j−1

∑
k=0

tk+1∫
s=tk

t j + t j−1−2s
(t j− s)σ

ds+O(N−2)

∣∣∣∣∣.
From [14], we get ∣∣∣∣∣ 1

Γ(1−σ)

j−1

∑
k=0

tk+1∫
s=tk

t j + t j−1−2s
(t j− s)σ

ds

∣∣∣∣∣≤CN−(2−σ).

This however means |ε(1)
j | ≤ CN−(2−σ). In a similar way, we can show that |ε(2)

j | ≤ CN−(2−σ). Hence
completes the proof.
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Denote e(1)j = X(t j)−X j, e(2)j = Y (t j)−Yj, and E j =W (t j)−Wj = [e(1)j ,e(2)j ]T for j = 1,2, . . . ,N be the
error at t j. By using (1) and (4) the following error equation is obtained{

Dσ
N E j = G(t j,W (t j))−G(t j,Wj)+E j for j = 1,2, . . . ,N,

E0 = 0.
(8)

Using Lemma (1), the error equation can be written as{
Dσ

N

∥∥E j
∥∥≤ L

∥∥E j
∥∥+∥∥E j

∥∥, for j = 1,2, . . . ,N,

E0 = 0.
(9)

Theorem 1. Solution of the error equation (9) satisfies the following stability result

‖E j‖ ≤C sup
1≤k≤ j−1

{
‖Ek‖

}
.

Proof. Using (2), the inequality (9) can be written as

τ−σ

Γ(2−σ)

[
d1‖E j‖−

j−1

∑
k=1

(
d j−k−d j−k+1

)
‖Ek‖

]
≤ L‖E j‖+‖E j‖,

or (
τ−σ

Γ(2−σ)
−L
)
‖E j‖ ≤

τ−σ

Γ(2−σ)

j−1

∑
k=1

(
d j−k−d j−k+1

)
‖Ek‖+‖E j‖,

or

‖E j‖ ≤
M

1−Lτσ Γ(2−σ)

j−1

∑
k=1
‖Ek‖+

1
τ−σ

Γ(2−σ)
−L
‖E j‖,

where M = max
1≤k≤ j−1

{
d j−k−d j−k+1

}
. From [15], for LΓ(2−σ)< τ−σ and lim

h→0

j−1

∑
k=1
‖Ek‖= 0, we have

‖E j‖ ≤C sup
1≤k≤ j−1

{
‖Ek‖

}
.

Hence the desired result.

Theorem 2. Suppose {W (t j)}N
j=1 be the exact solution and {Wj}N

j=1 be the approximate solution of (1),
then we have

max
1≤ j≤N

∥∥W (t j)−Wj
∥∥≤CN−(2−σ).

Proof. The Lemma 2 and Theorem 1 yields

‖E j‖ ≤C sup
1≤k≤ j−1

{
‖Ek‖

}
≤C sup

1≤k≤ j−1

{
N−(2−σ)

}
≤CN−(2−σ).

This completes the proof.
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Figure 1: Numerical solutions with N = 50 for Example 1.

4.1 Numerical experiments

Example 1. Consider the test problem with T = 1:
Dσ

t X(t) = t2X(t)− t3X(t)Y (t),

Dσ
t Y (t) = t3X(t)Y (t)− t4Y (t),

X(0) = 1, Y (0) = 1.

Due to the unavailability of the analytical solutions in the test example, the maximum error (ΣN) is
estimated using the double mesh principle. Now, if z j is the computed solution at t j with N number of
partitions, then

ΣN = max
0≤ j≤N

∣∣z j− z̃ j
∣∣,

where z̃ j is the interpolating solution obtained using the computed solutions with N and 2N number of
partitions. The corresponding order of convergence (ρN) is estimated as

ρN = log2

(
ΣN

Σ2N

)
.

Figure 1 shows the numerical solutions profile with different values of σ for Example 1. The surface plot
of the approximate solutions is presented in Figure 2. The log-log plots of the numerical error and the
error bounds are displayed in Figure 3. Absolute errors (ΣN) and order of convergences (ρN) are reported
in Tables 1 and 2. With these results, it is apparent that the proposed technique provides an acceptable
solution.

Example 2. Consider the test problem with T = 1:
Dσ

t X(t) =−X(t)Y (t)+ f (t),

Dσ
t Y (t) = X(t)Y (t)−Y (t)+g(t),

X(0) = Y (0) = 0.
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Figure 2: Surface plot of the numerical solutions with N = 50 for Example 1.

Table 1: ΣN and ρN of X(t) for Example 1.

σ/M 32 64 128 256 512 1024 2048

0.1 1.464E-04 4.456E-05 1.324E-05 3.875E-06 1.120E-06 3.208E-07 9.113E-08

1.725 1.752 1.774 1.790 1.804 1.815

0.3 6.513E-04 2.174E-04 7.099E-05 2.285E-05 7.283E-06 2.304E-06 7.249E-07

1.581 1.584 1.583 1.614 1.635 1.649

0.5 1.225E-03 4.694E-04 1.747E-04 6.391E-05 2.311E-05 8.297E-06 2.964E-06

1.418 1.451 1.469 1.479 1.486 1.490

0.7 8.239E-04 3.537E-04 1.497E-04 6.255E-05 2.587E-05 1.063E-05 4.348E-06

1.237 1.266 1.281 1.289 1.294 1.297

0.9 1.009E-03 4.733E-04 2.213E-04 1.033E-04 4.823E-05 2.250E-05 1.050E-05

1.093 1.093 1.094 1.096 1.097 1.098

We choose f (t) and g(t), so that the exact solution is X(t) = t2+σ , Y (t) = −t3+σ . The approximate
solutions with different values of σ are presented graphically in Figure 5 for Example 2. In Figure 6, the
log-log plot of the computational error indicates a sharp convergence rate. The computed values ΣN and
ρN are displayed in Table 3 and Table 4, indicating the sharp convergence with optimal convergence rate
O(2−σ).
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Table 2: ΣN and ρN of Y (t) for Example 1.

σ/M 32 64 128 256 512 1024 2048

0.2 3.546E-04 1.130E-04 3.511E-05 1.074E-05 3.251E-06 9.753E-07 2.905E-07

1.650 1.686 1.708 1.724 1.737 1.747

0.4 1.030E-03 3.673E-04 1.275E-04 4.355E-05 1.473E-05 4.949E-06 1.655E-06

1.488 1.527 1.549 1.564 1.574 1.581

0.6 1.137E-03 4.631E-04 1.841E-04 7.198E-05 2.783E-05 1.068E-05 4.082E-06

1.295 1.331 1.355 1.371 1.381 1.388

0.8 7.764E-04 3.409E-04 1.491E-04 6.507E-05 2.836E-05 1.235E-05 5.377E-06

1.187 1.193 1.196 1.198 1.199 1.200

Table 3: ΣN and ρN of X(t) for Example 2.

σ/M 32 64 128 256 512 1024 2048

0.2 9.677E-03 2.685E-03 7.887E-04 2.344E-04 6.961E-05 2.060E-05 6.070E-06

1.849 1.767 1.751 1.751 1.757 1.763

0.4 9.000E-03 3.002E-03 1.008E-03 3.379E-04 1.130E-04 3.765E-05 1.252E-05

1.584 1.575 1.576 1.581 1.585 1.589

0.6 1.638E-02 6.198E-03 2.360E-03 8.989E-04 3.421E-04 1.300E-04 4.938E-05

1.402 1.393 1.392 1.394 1.395 1.397

0.8 3.287E-02 1.410E-02 6.108E-03 2.656E-03 1.156E-03 5.033E-04 2.192E-04

1.221 1.207 1.202 1.200 1.200 1.200

Table 4: ΣN and ρN of Y (t) for Example 2.

σ/M 32 64 128 256 512 1024 2048

0.1 2.704E-01 3.517E-01 9.919E-02 6.840E-03 1.569E-03 4.177E-04 1.151E-04

-0.379 1.826 3.858 2.124 1.909 1.860

0.3 5.541E-03 1.737E-03 5.500E-04 1.739E-04 5.475E-05 1.717E-05 5.364E-06

1.673 1.659 1.661 1.667 1.673 1.678

0.5 9.990E-03 3.575E-03 1.282E-03 4.585E-04 1.636E-04 5.820E-05 2.067E-05

1.482 1.480 1.483 1.487 1.491 1.493

0.7 2.133E-02 8.663E-03 3.531E-03 1.439E-03 5.862E-04 2.385E-04 9.700E-05

1.300 1.295 1.295 1.296 1.297 1.298

0.9 4.607E-02 2.119E-02 9.831E-03 4.577E-03 2.134E-03 9.952E-04 4.643E-04

1.121 1.108 1.103 1.101 1.100 1.100
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Figure 3: Loglog plots of ρN for Example 1.
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Figure 4: Error plots of ρN for Example 1.

5 Conclusion

This paper presented an efficient numerical algorithm to approximate a system of time-fractional differ-
ential equations. Firstly, the L1 scheme is applied to discretize the differential operator. The Newton-
Raphson method solves the corresponding nonlinear algebraic system. The scheme is shown to (2−σ)
order of accuracy. A detailed error analysis is provided. Tables and graphs show that the proposed
scheme converges uniformly.
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