
تعداد نشریات | 31 |
تعداد شمارهها | 804 |
تعداد مقالات | 7,707 |
تعداد مشاهده مقاله | 35,372,791 |
تعداد دریافت فایل اصل مقاله | 7,818,951 |
Ordered maps and kernels of OBCI-algebras | ||
Journal of Algebra and Related Topics | ||
دوره 13، شماره 1، مهر 2025، صفحه 135-157 اصل مقاله (215.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.24864.1546 | ||
نویسندگان | ||
E. Yang* 1؛ E. H. Roh2؛ Y. B. Jun3 | ||
1Department of Philosophy, Institute of Critical Thinking and Writing, Jeonbuk National University, Jeonju, Korea | ||
2Department of Mathematics Education, Chinju National University of Education, Jinju, Korea | ||
3Department of Mathematics Education, Gyeongsang National University, Jinju, Korea | ||
چکیده | ||
Yang-Roh-Jun recently introduced the notion of ordered BCI-algebras as a generalization of BCI-algebras. They further introduced the notions of homomorphisms of ordered BCI-algebras and studied associated properties. Here we generalize homomorphisms into ordered maps, i.e., order-preserving maps. More precisely, the notions of ordered maps and kernels of ordered BCI-algebras are first defined. Next, properties related to (ordered) subalgebras, (ordered) filters and direct products of ordered BCI-algebras are addressed. | ||
کلیدواژهها | ||
((ordered) BCI-algebra؛ Ordered map؛ Kernel؛ (ordered) Subalgebra؛ (ordered) Filter | ||
مراجع | ||
[1] N. O. AL-Shehri, ON Hom (-, -) as B-algbras, JP J. Algebra, Number Theory Appl., 18 (2010), 17–24. [2] M. Aslam and A.B. Thaheem, A note on p-semisimple BCI-algebras, International Centre for Theoretical Physics, Trieste, 1989. [3] M. A. Chaudhry and H. Fakhar-ud-din, Some categorical aspects of BCH-algebras, Int. J. Math. Math. Sci., 27 (2003), 1739–1750. [4] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasig. Relat. Syst., 8 (2001), 1–6. [5] B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge Univ Press, Cambridge, 2002. [6] Y. Ding, F. Ge and C. Wu, BCI-homomorphisms, Formaliz. Math., 16 (2008), 371–376. [7] W. A. Dudek and Y. B. Jun, Radical theory in BCH-algebras, Algebra Discrete Math., 1(2002), 69–78. [8] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11 (1983), 313–320. [9] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japo., 30 (1985), 659–661. [10] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006. [11] Y. Imai, K. Iséki, On axiom systems of proposition calculi, Proc. Japan. Acad., 42 (1966) 19–22. [12] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad., 42 (1966), 26–29. [13] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online, 1 (1998), 347–354. [14] Y. B. Jun, H. S. Kim and M. Kondo, On BH-relations in BH-algebras, Sci. Math. Japonica Online, 9(2003), 91–94. [15] A. A. Neamah and S. A. Neamah, Relationship the P-ideal with other concepts of BHalgebra, Int. J. Algebra, 12 (2018), 95–102. [16] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21–29. [17] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J., 2 (2002), 215–219 [18] A. N. Sebandal and J. P. Vilela, Free commutative B-algebras, Ital. J. Pure Appl. Math., 44 (2020), 208–223. [19] F. S. Sultana, M. A. Chaudhry and H. Fakhar-ud-din, BCH-semigroup ideals in BCHsemigroups, PJM, 5 (2016), 1–5. [20] E. Yang, E. H. Roh and Y. B. Jun, An introduction to the theory of OBCI-algebras, AIMS Math., (12) 9 (2024), 36336–36350. [21] E. Yang, E. H. Roh and Y. B. Jun, Homomorphisms of ordered BCI-algebras, Afr. Mat., (30) 36 (2025). | ||
آمار تعداد مشاهده مقاله: 55 تعداد دریافت فایل اصل مقاله: 22 |