
تعداد نشریات | 31 |
تعداد شمارهها | 805 |
تعداد مقالات | 7,711 |
تعداد مشاهده مقاله | 35,387,156 |
تعداد دریافت فایل اصل مقاله | 7,832,611 |
The co-prime power order graph of a finite group | ||
Journal of Algebra and Related Topics | ||
دوره 13، شماره 1، مهر 2025، صفحه 45-52 اصل مقاله (156.3 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.24886.1547 | ||
نویسندگان | ||
H. H. Mushatet1؛ A. A. Talebi* 2 | ||
1Ministry of Education, Dhi Qar Education Directorate, Iraq | ||
2Department of Mathematics, University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
In this study, we generalized the co-prime graph of a finite group called the co-prime power order graph of a finite group. It is denoted by $\beta_G$, and its vertex set is $G$, such that two distinct vertices $x$ and $y$ are adjacent if and only if $\operatorname{gcd}(|x|,|y|)=p^n$, where $p$ is a prime number, and $n \in \mathbb{Z}^{+} \cup\{0\}$. We characterized complete graphs and planar graphs on the co-prime power order graphs, and investigated some properties of graph $\beta_G$ for some groups such as cyclic groups, dihedral groups, and the generalized quaternion groups, and obtained the vertex-connectivity among them. Finally, we characterized some induced subgraphs of co-prime power order graph for some finite groups. | ||
کلیدواژهها | ||
Cyclic group؛ Dihedral group؛ Generalized quaternion group؛ Complete graph؛ Planar graph؛ Co-prime order graph؛ Induced graph؛ Vertex-connectivity | ||
مراجع | ||
[1] S. Banerjee, On a new graph defined on the order of elements of a finite group, arXiv e-prints, arXiv-1911, (2019). [2] H. R. Dorbidi, A note on the coprime graph of a group, International Journal of Group Theory, (4) 5 (2016), 17–22. [3] J. R. Durbin, Modern algebra: An introduction, John Wiley and Sons, 2008. [4] D. Gorenstein, Finite groups, 301, American Mathematical Soc., 2007. [5] S. Hao, G. Zhong and X. Ma, Notes on the co-prime order graph of a group, In Proceedings of the Bulgarian Academy of Sciences, (3) 75 (2022), 340–348. [6] D. L. Johnson and D. L. Johnson, Topics in the theory of group presentations, 42, Cambridge University Press, 1980. [7] X. Ma, H. Wei and L. Yang, The coprime graph of a group, International Journal of Group Theory, (3) 3 (2014), 13–23. [8] J. S. Milne, Group Theory (v3.13), 2013. [9] R. Rajkumar and P. Devi, Coprime graph of subgroups of a group, arXiv preprint arXiv:1510.00129, (2015). [10] M. Saini, S. M. S. Khasraw, A. Sehgal and D. Singh, On co-prime order graphs of finite abelian p-groups, J. Math. Comput. Sci., (6) 11 (2021), 7052–7061. [11] M. Sattanathan and R. Kala, An introduction to order prime graph, Int. J. Contemp. Math. Sciences, (10) 4 (2009), 467–474. [12] K. Selvakumar and M. Subajini, Classification of groups with toroidal coprime graphs, Australas. J. Combin, (2) 69 (2017), 174–183. [13] W. D. Wallis, Graph theory with applications, ja Bondy and usr Murty, 1979. [14] R. J. Wilson, Introduction to graph theory, uPDF eBook, Pearson Higher Ed, 2015. | ||
آمار تعداد مشاهده مقاله: 95 تعداد دریافت فایل اصل مقاله: 37 |