
تعداد نشریات | 31 |
تعداد شمارهها | 792 |
تعداد مقالات | 7,554 |
تعداد مشاهده مقاله | 24,670,593 |
تعداد دریافت فایل اصل مقاله | 7,582,922 |
بررسی اثر میدان مغناطیسی بر خصوصیات بتن حاوی الیاف فولادی و سنگدانه مگنتیت | ||
تحقیقات بتن | ||
دوره 17، شماره 4 - شماره پیاپی 48، دی 1403، صفحه 61-71 اصل مقاله (1.49 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2025.28689.1674 | ||
نویسندگان | ||
محمد حج فروش1؛ رحمت مدندوست* 2؛ صابر دیلمی3 | ||
1محقق پسادکتری سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران | ||
2استاد گروه سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران | ||
3دانشجوی دکتری سازه، دانشکده فنی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
هدف از ارائه مقاله حاضر بررسی اثر اعمال مستقیم میدان مغناطیسی با شدت 5/0 تسلا به بتن تازه حاوی 1 درصد حجمی الیاف فولادی و سنگدانه مگنتیت با مقادیر 50 و 100 درصد به عنوان جایگزین سنگدانه معمولی در بتن میباشد. خواص مقاومتی بتن توسط آزمایشهای مقاومتهای فشاری و خمشی در سن 28 روز و مشخصه ریزساختار بتن به کمک تصویربرداری میکروسکوپ الکترونی ارزیابی شد. همچنین به منظور بررسی جهتگیری الیافهای فولادی در بتن تحت میدان مغناطیسی از تصویربرداری با اشعه ایکس استفاده گردید. نتایج مطالعه حاضر نشان داد که اعمال میدان مغناطیسی به بتن حاوی 50 درصد سنگدانه مگنتیت موجب افزایش مقاومتهای فشاری و خمشی آن به ترتیب تا 7/10 و 7/17 درصد شده است. تصاویر میکروسکوپ الکترونی مشخص نمود که اعمال میدان مغناطیسی به بتن موجب تراکم ریزساختار خمیر سیمان شده و میزان تخلخل بتن را کاهش میدهد. نتایج تصویربرداری با اشعه ایکس از نمونههای بتن الیافی نیز نشان داد که الیافهای فولادی در بتن تحت میدان مغناطیسی میتوانند به نحو مطلوبی در راستای شار مغناطیسی جهتگیری شوند. | ||
کلیدواژهها | ||
میدان مغناطیسی؛ بتن؛ الیاف فولادی؛ سنگدانه مگنتیت؛ میکروسکوپ الکترونی؛ اشعه ایکس | ||
مراجع | ||
[1] de Lacheisserie, E.D.T., Gignoux, D., Schlenker, & M., Magnetism, Springer Science & Business Media2005.
[2] Harrison, R.J., Dunin-Borkowski, R.E., & Putnis, A., Direct imaging of nanoscale magnetic interactions in minerals, Proceedings of the National Academy of Sciences 99(26) (2002) 16556-16561.
[3] Horszczaruk, E., Sikora, P., & Zaporowski, P., Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Engineering 108 (2015) 39-46.
[4] Valizadeh, A., Aslani, F., Asif, Z., Roso, M., Development of heavyweight self-compacting concrete and ambient-cured heavyweight geopolymer concrete using magnetite aggregates, Materials 12(7) (2019) 1035.
[5] Madandoust, R., Ranjbar, M. M., Ghavidel, R., & Shahabi, S. F. (2015). Assessment of factors influencing mechanical properties of steel fiber reinforced self-compacting concrete. Materials & Design, 83, 284-294.
[6] Sadrmomtazi, A., & Tahmouresi, B. (2017). Effect of fiber on mechanical properties and toughness of self-compacting concrete exposed to high temperatures. AUT Journal of Civil Engineering, 1(2), 153-166.
[7] Sadrmomtazi, A., & Rad, S. K. (2024). Investigating the fracture parameters of lightweight geopolymer concrete reinforced with steel and polypropylene fibers. Theoretical and Applied Fracture Mechanics, 129, 104223.
[8] Mousavinejad, S. H. G., & Gashti, M. F. (2021). Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavy weight geopolymer concrete. Theoretical and Applied Fracture Mechanics, 113, 102967.
[9] Mousavinejad, S. H. G., & Sammak, M. (2022). An assessment of the fracture parameters of ultra-high-performance fiber-reinforced geopolymer concrete (UHPFRGC): The application of work of fracture and size effect methods. Theoretical and Applied Fracture Mechanics, 117, 103157.
[10] Du, J., Tang, C., Jia, B., Zhang, D., & Miao, Q., Preparation and long-term stability study of steel fiber/graphite conductive concrete. Key Eng. Mater. 2016; 680: 361–364.
[11] Shahir Liew, M., Nguyen-Tri, P., Nguyen, T.A., & Kakooei, S., Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications. Elsevier, 2019; 215-239.
[12] Wijffels, M.J.H., Wolfs, RJ.M, Suiker, A.S.J., & Salet, T.A.M., Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behavior. Cem. Concr. Compos. 2017; 80: 342-355.
[13] Mu, R., Li, H., Qing, L., Lin, J., & Zhao, Q., Aligning steel fibers in cement mortar using electro-magnetic field. Constr. Build. Mater. 2017; 131: 309-316.
[14] Hajforoush, M., Kheyroddin, A., & Rezaifar, O., Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field. Constr. Build. Mater. 2020; 252: 119064.
[15] Ferrández, D., Saiz, P., Morón, C., Dorado, M.G., &Morón, A., Inductive method for the orientation of steel fibers in recycled mortars. Constr. Build. Mater. 2019; 222: 243-253.
[16] Abavisani, I., Rezaifar, O., & Kheyroddin, A., Alternating magnetic field effect on fine aggregate steel chip-reinforced concrete properties, J. Mater. Civ. Eng. 2018; 30: 04018087.
[17] Hajforoush, M., Kheyroddin, A., Rezaifar, O., Kazemi, M., Magnetic field effect on bond performance between reinforcement and concrete containing steel fibers. Journal of Building Engineering. 98, 2024; 111215.
[18] Soto-Bernal, J.J., Gonzalez-Mota, R., & Rosales-Candelas, I., Ortiz-Lozano, J.A., Effects of static magnetic fields on the physical, mechanical, and microstructural properties of cement pastes. Adv. Mater. Sci. Eng. 2015; 1-9.
[19] Abavisani, I., Rezaifar, O., & Kheyroddin, A., Magneto-electric control of scaled-down reinforced concrete beams. ACI Struct. J. 2017; 114: 233-244.
[20] Rezaifar, O., Abavisiani, I., & Kheyroddin, A., Magneto-electric active control of scaled down reinforced concrete columns. ACI Struct. J. 2017; 114: 1351-1362.
[21] Hajforoush, M., Kheyroddin, A., & Rezaifar, O., Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field, Construction and Building Materials 252 (2020).
[22] Ahmed, S.M., & Manar, D.F., Effect of static magnetic field treatment on fresh concrete and water reduction potential, Case Studies in Construction Materials 14 (2021) e00535.
[23] حجفروش، محمد.، خیرالدین، علی.، رضائی فر، امید.، اثر میدان مغناطیسی برمقاومت پیوستگی میلگرد در بتن حاوی الیاف فولادی با استفاده از آزمون بیرون کشیدگی میلگرد، مجله علمی پژوهشی تحقیقات بتن، دانشگاه گیلان، 1399.
[24] طاهری، مجید.، رضایی فر، امید.، خیرالدین، علی.، تأثیر میدان مغناطیسی یکنواخت بر مقاومت پیوستگی میلگرد در بتن حاوی سنگدانههای کوارتز با بهرهگیری از آزمایش Pullout ، مجله علمی پژوهشی مهندسی سازه و ساخت 9(1) (1401) 174-187.
[25] Rezaifar, O., Ghanepour, M., & Amini, M.M., "A novel magnetic approach to improve compressive strength and magnetization of concrete containing nano silica and steel fibers." Journal of Building Engineering 91 (2024): 109342.
[26] ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2018.
[27] ASTM C494, Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, USA, 2004.
[28] Song, PS., Hwang, S., Mechanical properties of high-strength steel fiber-reinforced concrete, Constr. Build. Mater. 2004; 18(9): 669-673.
[29] ASTM C192, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken. PA, USA, 2018.
[30] Javahershenas, F., Sohrabi Gilani, M., Hajforoush, M., Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC), Journal of Building Engineering 35 (2021) 101975.
[31] B.S. EN, Testing hardened concrete–Part 3: compressive strength of test specimens, British Standard Institution, London, UK (2009).
[32] C. ASTM, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), American Society for TestingMaterials, ASTM Michigan, United States, 2016.
[33] ACI Committee 318-19., (2019), Building code requirements for structural concrete, USA: American Concrete Institute.
| ||
آمار تعداد مشاهده مقاله: 329 تعداد دریافت فایل اصل مقاله: 103 |