| تعداد نشریات | 32 |
| تعداد شمارهها | 826 |
| تعداد مقالات | 7,979 |
| تعداد مشاهده مقاله | 42,417,503 |
| تعداد دریافت فایل اصل مقاله | 8,523,893 |
Another view of BZ-algebras | ||
| Journal of Algebra and Related Topics | ||
| دوره 13، شماره 2، اسفند 2025، صفحه 119-135 اصل مقاله (174.88 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2024.26251.1612 | ||
| نویسندگان | ||
| T. Oner1؛ T. Katican2؛ A. Borumand Saeid* 3 | ||
| 1Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey | ||
| 2Department of Mathematics, Izmir University of Economics, Izmir, Turkey | ||
| 3Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran | ||
| چکیده | ||
| In this work, Sheffer stroke BZ-algebra (briefly, SBZ-algebra) is introduced and its properties are examined. Then a partial order is defined on SBZ-algebras. It is shown that a Cartesian product of two SBZ-algebras is an SBZ-algebra. After giving SBZ-ideals and SBZsubalgebras, it is proved that any SBZ-ideal of an SBZ-algebra is an ideal of this SBZ-algebra and vice versa, and that it is also an SBZ-subalgebra. Also, a congruence relation on an SBZ-algebra is determined by an SBZ-ideal, and the quotient of an SBZ-algebra by a congruence relation on this algebra is constructed. Thus, it is proved that the quotient of the SBZ-algebra is an SBZalgebra. Furthermore, we define SBZ-homomorphisms between SBZ-algebras and state that the kernel of an SBZ-homomorphism is an SBZ-ideal and so an SBZ-subalgebra. Hence, a new SBZ-homomorphism is described by means of the kernel of an SBZ-homomorphism. Finally, we show that some properties are preserved under SBZ-homomorphisms. | ||
| کلیدواژهها | ||
| BZ-algebra؛ Sheffer stroke؛ Congruence؛ SBZ-homomorphism | ||
| مراجع | ||
|
[1] J. C. Abbot, Implicational algebras, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, (1) 11 (1967), 3-23. [2] I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, (1) 44 (2005), 19-23. [3] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups Related Systems, 8 (2001), 1-6. [4] W. A. Dudek and J. Thomys, On some generalization of BCC-algebras, Internat. J. Comp. Math., 89 (2012), 1596-1616. [5] W. A. Dudek, X. H. Zhang and Y. Q. Wang, Ideals and atoms of BZ-algebras, Math. Slovaca, 59 (2009), 387-404. [6] T. Katican, T. Oner and A. Borumand Saeid, On Sheffer stroke BE-algebras, Discussione Mathematicae General Algebra and Applications, (2) 42 (2022), 293-314. [7] H. M. Khalid and B. Ahmad, Fuzzy H-ideals in BCI-algebras, Fuzzy Sets and Systems, 101 (1999), 153-158. 8] Y. Komori, The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ., 17 (1983), 13-16. [9] Y. Komori, The class of BCC-algebras is not variety, Math. Japonica, 29 (1984), 391-394. [10] A. Lyczkowska, Fuzzy QA-ideals in weak BCC-algebras, Demonstratio Math., 34 (2001), 513-524. [11] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning, (1) 29 (2002), 1-16. [12] T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer Stroke and Hilbert Algebras, Categories and General Algebraic Structures with Applications, (1) 14 (2021), 245-268. [13] T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent and Fuzzy Systems, (1) 40 (2021), 759-772. [14] T. Oner, T. Katican and A. Borumand Saeid, On Sheffer stroke UP-algebras, Discussione Mathematicae General Algebra and Applications, (2) 41 (2021), 381-394. [15] T. Oner, T. Katican and A. Borumand Saeid, Neutrosophic N-structures on Sheffer stroke Hilbert algebras, Neutrosophic Sets and Systems, 42 (2021), 221-238. [16] T. Oner, T. Katican and A. Rezaei, Neutrosophic N-structures on strong Sheffer stroke non-associative MV-algebras, Neutrosophic Sets and Systems, 40 (2021), 235-252. [17] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Consanta, (1) 29 (2021), 143-164. [18] T. Oner, T. Katican and A. Borumand Saeid, (Fuzzy) filters of Sheffer stroke BL-algebras, Kragujevac Journal of Mathematics, (1) 47 (2023), 39-55. [19] E. L. Post, Introduction to a general theory of elementary propositions, Am. Jl. of Math., 43 (1921), 167–168. [20] A. Radfar, S. Soleymani, A. Rezaei, Some results on commutative BI-Algebras, Journal of Mahani Mathematical Research, (1) 13 (2023), 491-510. [21] D. Romano, On filters in BZ-algebras, Filomat, (18) 32 (2018), 6319-6326. [22] H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society, (4) 14(1913), 481-488. [23] D. L. Webb, Generation of any n-valued logic by one binary operator, Proc. Nat. Acad. Sci., 21 (1935), 252-254. [24] R. F. Ye, On BZ-algebras, Selected Papers on BCI/BCK-algebras and Computer Logic Shangai Jiaotong Univ. Press, (1991), 21-24. [25] X. H. Zhang and R. F. Ye, BZ-algebras and groups, J. Math. Phys. Sci., 29 (1995), 223-233. [26] X. H. Zhang, Y. Q. Wang and W. A. Dudek, T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math., 34 (2003), 1559-1570. | ||
|
آمار تعداد مشاهده مقاله: 191 تعداد دریافت فایل اصل مقاله: 22 |
||