| تعداد نشریات | 32 |
| تعداد شمارهها | 826 |
| تعداد مقالات | 7,979 |
| تعداد مشاهده مقاله | 42,417,508 |
| تعداد دریافت فایل اصل مقاله | 8,523,896 |
Some properties of FP-injective modules over group rings | ||
| Journal of Algebra and Related Topics | ||
| دوره 13، شماره 2، اسفند 2025، صفحه 85-98 اصل مقاله (182.59 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2024.27046.1651 | ||
| نویسنده | ||
| A. Hajizamani* | ||
| Department of Mathematics, University of Hormozgan, Bandarabbas, Iran. | ||
| چکیده | ||
| FP-injective modules, which are also called absolutely pure modules, play an important role in characterizing some classical rings such as semihereditary, Noetherian, von-Neumann regular, and coherent rings. These modules have excellent properties over coherent rings similar to injective modules over Noetherian rings. In the present article, we study this class of modules over the group ring $\rga$ of a group $\ga$, concerning a commutative ring $R$. We show that if $\gb$ is a finite index subgroup of $\ga$, then the restriction of scalars along the natural ring homomorphism $\rgb\rightarrow \rga$ and its right adjoint $\rga\otimes_{\rgb}-$ preserve FP-injective modules. We will also examine the properties of FP-injective modules over the group ring of $\LHF$-groups. Next, we will switch to the so-called Ding-Chen rings. These rings are coherent versions of Iwanaga-Gorenstein rings, where Noetherian and self-injectivity are replaced by coherence and self-FP-injectivity, respectively. In particular, we have investigated the ascent and descent of the Ding-Chen property between the rings $\rga$ and $\rgb$. | ||
| کلیدواژهها | ||
| Group ring؛ FP-injective module؛ Ding-Chen ring | ||
| مراجع | ||
|
[1] D. D. Adams, Absolutely pure modules, Ph.D. Thesis, University of Kentucky, Department of Mathematics, 1978. [2] J. Asadollahi, A. Bahlekeh, A. Hajizamani and Sh. Salarian, On certain homological invariants of groups, J. Algebra, 335 (2011), 18-35. [3] D. Ballas and C. Chatzistavridis, On certain homological invariants for coherent rings, preprint. [4] S. Bazzoni, M. Cortés-Izudriaga and S. Estrada, Periodic modules and acyclic complexes, Algebr. Represent. Theory, 23 (2020), 1861-1883. [5] D. J. Benson, Representations and Cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, 1991, reprinted in paperback, 1998. [6] D. J. Benson and K. R. Goodearl, Periodic flat modules, and flat modules for finite groups, Pacific J. Math., 196 (2000), 45-66. [7] R. Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, 1977. [8] D. Bravo, J. Gillespie and M. Hovey, The stable module category of a general ring, (preprint 2014, http://adsabs.harvard.edu/abs/2014arXiv1405.5768B). [9] D. Bravo and M. A. Pérez, Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra, 221 (2017), 1249-1267. [10] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, vol. 37. Springer, Berlin-Heidelberg-New York, 1982. [11] G. C. Dai and N. Q. Ding, Coherent rings and absolutely pure covers, Comm. Algebra, 46 (2018), 1267-1271. [12] N. Ding and J. Chen, The flat dimensions of injective modules, Manuscripta Math., 78 (1993), 165-177. [13] N. Ding and J. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 24 (1996), 2963-2980. [14] I. Emmanouil, On certain cohomological invariants of groups, Adv. Math., 225 (2010), 3446-3462. [15] I. Emmanouil and O. Talelli, On the flat length of injective modules, J. Lond. Math. Soc., 84 (2011), 408-432. [16] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math., 30, Walter de Gruyter and Co., Berlin, 2000. [17] T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl., 25 (1987), 203-223. [18] J. Gillespie, Model structures on modules over Ding-Chen rings, Homol. Homotopy Appl., 12 (2010), 61-73. [19] S. Glaz, On the Weak Dimension of Coherent Group Rings, Comm. Algebra, 15 (1987), 1841-1858. [20] S. Glaz and R. Schwarz, Finiteness and homological conditions in commutative group rings, in Progress in Commutative Algebra 2 (De Gruyter, Berlin, 2012), 129-143. [21] S. Jain, Flat and FP-injectivity, Proc. Amer. Math. Soc., 41 (1973), 437-442. [22] P. H. Kropholler, On groups of type FP∞, J. Pure Appl. Algebra, 90 (1993), 55-67. [23] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999. [24] B. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc., 18 (1967), 155-158. [25] B. Matthews, Homological Methods for Graded k-Algebras, Ph.D. Thesis, University of Glasgow, 2007. [26] C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc., 26 (1970), 561-566. [27] M. R. R. Moghaddam, The Baer invariant and the direct limit, Monatsh. Math., 90 (1980), 37-43. [28] K. Pinzon, Absolutely pure covers, Comm. Algebra, 36 (2008), 2186-2194. [29] J. J. Rotman, An Introduction to Homological Algebra, second ed., Universitext, 223, Springer-Verlag, 2009. [30] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc., 2 (1970), 323-329. | ||
|
آمار تعداد مشاهده مقاله: 140 تعداد دریافت فایل اصل مقاله: 17 |
||