| تعداد نشریات | 32 |
| تعداد شمارهها | 826 |
| تعداد مقالات | 7,979 |
| تعداد مشاهده مقاله | 42,332,163 |
| تعداد دریافت فایل اصل مقاله | 8,520,987 |
A class of number fields without odd rational prime index divisors | ||
| Journal of Algebra and Related Topics | ||
| دوره 13، شماره 2، اسفند 2025، صفحه 149-163 اصل مقاله (200.23 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2024.27125.1656 | ||
| نویسندگان | ||
| J. Didi1؛ M. Sahmoudi* 2؛ A. Chillali1 | ||
| 1Department of Mathematics, LSI Laboratory, University of Sidi Mohamed Ben Abdellah, Route d’Oujda, Taza, Morocco | ||
| 2Department of Mathematics, University of Moulay Ismail, Zitoune, Meknes, Morocco | ||
| چکیده | ||
| In this work, for every number field $K$ generated by a root of a monic irreducible trinomial $F(x) = x^{7} + a.x^{6} + b \in \mathbb{Z}[x]$, we show that no odd rational prime $p$ divides the index $i(K)$, and we give the necessary and sufficient conditions on a, b such that $2$ divides $i(K)$. Specifically, we provide adequate requirements for $K$ to be non-monogenic. Finally, several computational examples are used to illustrate our conclusions. | ||
| کلیدواژهها | ||
| Monogeneity؛ Newton polygon؛ Prime ideal factorization؛ Dedekind؛ Common index divisor؛ Theorem of Ore | ||
| مراجع | ||
|
[1] O. Boughaleb, A. Soullami and M. Sahmoudi, On relative monogeneity of a family of number fields defined by Xpn + aXps − b, Bol. Soc. Mat. Mex., 29 (2023). [2] M. E. Charkani and M. Sahmoudi, Sextic extension with cubic subfield, J.P. Journal of Algebra. Number Theory et Applications, 34 (2014), 139-150. [3] M. E. Charkani, M. Sahmoudi and A. Soullami, Tower index formula and monogeneity, Communications in Algebra, 48 (2021), 139-150. [4] R. Dedekind, ”Uber den zusammenhang zwischen der theorie der ideale und der theorie der höheren kongruenzen, Göttingen Abhandlungen, 23 (1878), 1-23. [5] C. T. Davis and B. K. Spearman, The index of a quartic field defined by a trinomial x4+ax+b, J. Algebra Appl., 17 (2018), 185-197. [6] J. Didi, M. Sahmoudi, and A. Chillali On the monogeneity of certain class of number fields, Khayyam J. Math., (1) 10 (2024), 41-50. [7] L. El Fadil, On non-monogenicity of certain number fields defined by a trinomial x6+ax3+b, J. Number Theory, 239 (2022), 489-500. [8] L. El Fadil, J. Montes and E. Nart, Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl., 11 (2012) 1250073. [9] L. El Fadil and O. Kchit, On index divisors and monogenity of certain septic number fields defined by x7 + ax3 + b, Commun. Algebra, 51 (2023), 2349-2363. [10] H. T. Engstrom, On the common index divisors of an algebraic number fields, Amer. Math. Soc., 32 (1930), 223-237. [11] A. Hameed, T. Nakahara, S. M. Husnine and S. Ahmad, On existence of canonical number system in certain classes of pure algebraic number fields, J. of Prime Research in Math., 7 (2011), 19-24. [12] A. Hameed and T. Nakahara, Integral bases and relative monogeneity of pure octic fields, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., (4) 58(106) (2015), 419-433. [13] A. Hameed, T. Nakahara and S. Ahmad, Non-monogenity of an infinite family of pure octic fields, J. Elixir Appl. Math., 113 (2017), 49328-49333. [14] I. Gaál and L. Remete, Power integral bases in a family of sextic fields with quadratic subfields, Tatra Mount. Math. Publ., 64 (2015), 59-66. [15] I. Gaál, L. Remete and T. Szabó, Calculating power integral bases by using relative power integral bases, Funct. Approx. Comment. Math., 54 (2016), 141-149. [16] I. Gaál and L. Remete, Non-monogenity in a family of octic fields, Rocky Mountain J. Math., 47 (2017), 817-824. [17] I. Gaál, Diophantine equations and power integral bases, Theory and algorithm, Second edition. Boston. Birkhäuser, ed., 2019. [18] I. Gaál, An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl., 51 (2021), 97-111. [19] J. Gu´ardia, J. Montes and E. Nart, Newton polygons of higher order in algebraic number theory, J. trans. of ams., 364 (2012), 361-416. [20] A. Jakhar, S. K. Khanduja and N. Sangwan, On prime divisors of the index of an algebraic integer, Journal of Number Theory, 166 (2016), 47-61. [21] A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, 13 (2017), 2505-2514. [22] A. Jakhar and S. Kumar, On non-nonmonogenic number fields defined by x6 +ax+b, Can. Math. Bull.,65 (2021), 788-794. [23] A. Jakhar, S. K. Khanduja and N. Sangwan, On power basis of a class of algebraic number fields, I. J. Number Theory., 12 (2016), 2317-2321. [24] N. Khan, T. Nakahara and H. Sekiguchi, On the Monogenity of cyclic sextic fields of composite conductor, Journal of Mathematics, 50 (2018), 67-73. [25] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith., 43 (1984), 367-373. [26] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Third Edition, Springer, 2004. [27] O. Ore, Newtonsche polygone in der theorie der algebraischen korper, Math. Ann., 99 (1928), 84-117. [28] M. Sahmoudi and A. Soullami, On sextic integral bases using relative quadratic extention, Bol. Soc. Paran. Mat., 38 (2020), 175-180. [29] M. Sahmoudi and A. Soullami, On monogenity of relative cubic-power estensions, Advances in Mathematics: Scientific Journal, (9) 9 (2020), 6817-6827. [30] M. Sahmoudi, A. Soullami and O. Boughaleb, Power integral basis for relative extensions of pn-power number fields, Bol. Soc. Paran. Mat., 43 (2025), 1-9. [31] A. Soullami, M. Sahmoudi and O. Boughaleb, On relative power integral bases in a family of numbers fields , Rocky Mountain Journal of Mathematics, 51 (2021), 1443-1452. [32] M. Sahmoudi and M. E. Charkani, On relative pure cyclic fields with power integral bases, Math. Bohem., 148 (2022), 1-12. [33] E. Żyliński, Zur theorie der auβerwesentlichen diskriminantenteiler algebraischer körper, Math. Ann., 73 (1913), 273-274. | ||
|
آمار تعداد مشاهده مقاله: 1,237 تعداد دریافت فایل اصل مقاله: 26 |
||