
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,118 |
تعداد دریافت فایل اصل مقاله | 7,149,696 |
A generalization of r-submodules | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 2، فروردین 2025، صفحه 167-180 اصل مقاله (318.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.27906.1688 | ||
نویسنده | ||
S. Rajaee* | ||
Department of Mathematics, University of Payame Noor,Tehran, Iran | ||
چکیده | ||
Let $R$ be a commutative ring with identity $1\neq 0$ and $M$ a non-zero unital $R$-module. In this paper, we present the concept of fully $I$-submodules of $M$ such that $I$ is an ideal of $R$ which is a generalization of $r$-submodules. Consider that $I$ is an ideal of $R$, a proper submodule $N$ of $M$ is a fully $I$-submodule if $JK\subseteq N$ with ${\rm ann}_{M}(J)=0_{M}$ results that $K\subseteq N$ for each submodule $K$ of $M$ and each ideal $J$ of $R$. In addition, we present the concept of fully special $I$-submodules which is a generalization of special $r$-submodules. A proper submodule $N$ of $M$ is a fully special $I$-submodule if the inclusion $IL\subseteq N$ with ${\rm ann}_{R}(L) = 0_{R}$, implies that $I\subseteq (N:M)$ for each submodule $L$ of $M$ and each ideal $J$ of $R$. We explore certain outcomes related to these categories of submodules. | ||
کلیدواژهها | ||
r-submodule؛ I-submodule؛ sr-submodule؛ special I-submodule | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 104 تعداد دریافت فایل اصل مقاله: 20 |