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A GENERALIZATION OF r-SUBMODULES

S. RAJAEE

Abstract. Let R be a commutative ring with identity 1 ̸= 0
and M a non-zero unital R-module. In this paper, we present the
concept of fully I-submodules of M such that I is an ideal of R
which is a generalization of r-submodules. Consider that I is an
ideal of R, a proper submodule N of M is a fully I-submodule
if JK ⊆ N with annM (J) = 0M results that K ⊆ N for each
submodule K of M and each ideal J of R. In addition, we present
the concept of fully special I-submodules which is a generalization
of special r-submodules. A proper submodule N of M is a fully
special I-submodule if the inclusion IL ⊆ N with annR(L) = 0R,
implies that I ⊆ (N : M) for each submodule L of M and each ideal
J of R. We explore certain outcomes related to these categories of
submodules.

1. introduction

In this paper, R is a commutative ring with a non-zero identity,
and M is a unitary R-module. For each subset S of R, we denote by
annM(S) the set of elements m ∈ M such that ma = 0 for each a ∈ S.
In particular, for a ∈ R, annM(a) = {m ∈ M : am = 0} is named an
annihilator submodule of M . An element a ∈ R is named a zero-divisor
on M provided that there exists 0 ̸= m ∈ M such that am = 0, that
is annM(a) ̸= 0. We denote by ZR(M) (for short Z(M)) the collection
of all zero-divisors of R on M , i.e., Z(M) = {a ∈ R : annM(a) ̸= 0M}.
Note that the set S = R−ZR(M) is a multiplicatively closed subset of
R (i.e., 0 /∈ S, 1 ∈ S and for a, b ∈ S, ab ∈ S). If we consider R as an
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R-module, then we write Z(R) instead of ZR(R). An R-module M is
named a McCoy module provided that for every finitely generated ideal
I of R with I ⊆ Z(M), annM(I) ̸= 0. This is a natural extension of
the concept of a McCoy ring, see [6]. If N is an irreducible submodule
of M , then M/N is a McCoy R-module. For an R-module M , Z(M)
need not be an ideal of R in general. For instance, take M = Z2 × Z3

as a Z-module. Then one can check that Z(M) = 2Z ∪ 3Z. Of course,
in this case, since Z is a PID, M is McCoy.

The concept of r-ideals was introduced and studied by Mohamadian
in [9]. A proper ideal I of R is named an r-ideal if ab ∈ I and annR(a) =
{r ∈ R : ra = 0} = 0 results that b ∈ I for each a, b ∈ R. In [8], the
authors introduced and studied two different generalizations of r-ideals
to modules by r -submodules and sr -submodules. A proper submodule
N of M is named an r-submodule if am ∈ N with annM(a) = 0M
implies that m ∈ N for each a ∈ R, m ∈ M . Some preliminary
properties of r- submodules are given in [10, Remark 2.2, Proposition
2.3]. Also, a proper submodule N of M is named a special r-submodule
(briefly, sr-submodule) if for every m ∈ M and a ∈ R, am ∈ N with
annR(m) = 0R results that a ∈ (N : M). Let R be any ring and
let us consider R as a module over itself. Since that the submodules
of R are ideals in R, one can easily show that I is an r-ideal if and
only if I as a submodule is an r-submodule. The reader is referred to
[8] and [9] for a more detailed discussions. The main purpose of this
article is to generalize the concepts of r-submodules and sr-submodules
to the fully I-submodules and fully special I-submodules, respectively,
see Definition 2.1 and Definition 3.1.

An element m of an R-module M is named a torsion element if there
exists a regular element r of R (r is not a zero-divisor of R) such that
rm = 0. The collection of all torsion elements of M is named the
torsion submodule of M , denoted by TR(M). In fact, TR(M) = {m ∈
M : annR(m) ̸= 0}. An R-module M satisfies Property T if for every
finitely generated submodule N of M with N ⊆ TR(M) there exists a
non-zero r ∈ R with rN = 0, or equivalently annR(N) ̸= 0.

Also, Z(M) = {m ∈ M : annR(m) is an essential ideal in R} is a
submodule of M , which is named singular submodule. If Z(M) = M ,
(resp., Z(M) = (0)), then M is named singular (resp., nonsingular)
module. A module M over a ring R is called a torsion module if all
its elements are torsion elements, i.e., T(M) = M and torsion-free if
T(M) = 0. The torsion submodule of M is an r-submodule and also,
if R is a domain, then Z(M) is an r-submodule, see [10, Proposition
2.12].
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Note that, if X ⊆ M and N is the submodule of M generated by
X, then in general annR(N) is a subset of annR(X), but they are not
necessarily equal. If R is commutative, then the equality holds. A
module M on an integral domain (a commutative ring without zero-
divisors), R with annR(M) ̸= 0 is a torsion module. In addition, a
finitely generated torsion module has a non-zero annihilator. A module
M is a multiplication module whenever for each submodule N of M
there exists an ideal I of R where N = IM . It is shown that, in this
case, N = (N :R M)M , we direct the reader to [5, 9, 10, 11, 12].

2. A generalization of r-submodules

In this section, we expand upon the definition and findings presented
in [8] to encompass a broader fully I-submodule scenario for an ideal
I of R. Remember that a proper submodule N of a module M over a
commutative ring R is named an n-submodule, if for a ∈ R, x ∈ M ,
ax ∈ N with a /∈

√
ann(M), then x ∈ N . By [1, Theorem 2.2], the

following statements are equivalent: (i) N is an n-submodule of M ;
(ii) N = (N :M a) for every a /∈

√
ann(M); (iii) for every ideal I of R

and submodule K of M , IK ⊆ N with I ⊈
√

ann(M), implies that
K ⊆ N .

We initiate with the definition outlined.

Definition 2.1. Let M be a non-zero R-module, N a proper submod-
ule of M and I a non-zero ideal of R. Subsequently, we declare that

(i) N is an I-submodule of M if IK ⊆ N with annM(I) = 0M
results that K ⊆ N for each submodule K of M . Equivalently,
if for each submodule K of M , I ⊆ (N :R K) with annM(I) =
0M results that (N :R K) = R.

(ii) N is a fully I-submodule of M if the inclusion JK ⊆ N with
annM(J) = 0M results that K ⊆ N for each submodule K of
M and each ideal J of R.

(iii) M is a fully I-module if each submodule N of M is a fully I-
submodule.

Remark 2.2. Note that I ⊆ (N : K) ⊆ R with annM(I) = 0M results
that (N : K) = R shows that I is a maximal ideal in the following
collection

Λ := {I ∈ I(R) : K ≤ M and I ⊆ (N : K), annM(I) = 0M}.

In particular, when N is an I-submodule, if IK = N and annM(I) =
0M , then N ⊆ K and K ⊆ N result that K = N .
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In the following example (iii), we show that the concepts of r-submodule
and I-submodule are different in general case. In fact, if N is a fully
I-submodule of M , then N is an r-submodule of M .

Example 2.3. (i) Let M be a non-zero module on a field R. Then M
is a fully I-module.
(ii) Consider Q as a Z-module, N = Z, K = 1

s
Z and I = sZ. Then

annQ(sZ) = 0 and (sZ)(1
s
Z) = Z ⊆ N , but 1

s
Z ⊈ Z. Hence Z is not a

sZ-submodule of Q as a Z-module for every ideal sZ of Z.
(iii) Consider M = Z as a Z-module and the submodule N = 2Z of M .
Clearly, N is not an r-submodule of M since 2.3 ∈ N with annZ(2) = 0
but 3 /∈ N . We have two following cases:

case 1. Take, I = (2t+ 1)Z, then N is an I-submodule of M since
for every submodule K = sZ of Z, IK ⊆ 2Z with annZ(I) = 0 implies
that 2 | (2t + 1)s and so 2 | s hence K ⊆ N . Therefore, N = 2Z is a
(2t+ 1)Z-submodule of Z for each t ∈ N.

case 2. Now take, J = (2t)Z, then N = 2Z is not a J-submodule
of M because for K = 3Z, J(3Z) ⊆ 2Z and annZ(J) = 0 but 3Z ⊈ 2Z.
Hence N is not a J-submodule of M .

From these two situations, we conclude that 2Z is not a fully I-
submodule of Z as a Z-module.

Theorem 2.4. Let M be a faithful R-module with prime zero submod-
ule. Then the following statements are equivalent.

(i) N is an r-submodule of M ;
(ii) For every 0 ̸= a ∈ R and m ∈ M , a ∈ (N :R m) if and only if

(N :R m) = R;
(iii) For every finitely generated ideal I of R and submodule K of

M , I ⊆ (N :R K) if and only if (N :R K) = R.
(iv) For every finitely generated ideal I of R, N is an I-submodule.

Proof. (i ⇒ ii) Clearly, the zero submodule of a faithful module M is
prime if and only if annM(a) = (0), for any 0 ̸= a ∈ R. Now, assume
that N is an r-submodule of M and a ∈ (N :R m). By assumption,
am ∈ N with annM(a) = (0) results that m ∈ N so (N :R m) = R.
(ii ⇒ i) It is clear.
(i ⇒ iii) Assume that I = (a1, . . . , as). Then

annM(I) = annM(
s∑

i=1

aiR) =
s∩

i=1

annM(aiR) = 0.

If I ⊆ (N :R K), then IK ⊆ N with annM(I) = 0. Take, m ∈ K. By
assumption, for every 0 ̸= ai ∈ I (1 ≤ i ≤ s), aim ∈ IK ⊆ N with
annM(ai) = 0 implies that m ∈ N so K ⊆ N hence (N :R K) = R, as
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needed. The converse is clear.
(iii ⇒ ii) Take, I = (a) and K = Rm.
(iii ⇔ iv) It is clear. □
Corollary 2.5. Let M be a faithful module with 0 ∈ Spec(M) over a
Noetherian ring R and N a proper submodule of M . Then N is an
r-submodule if and only if N is a fully I-submodule.

The following corollary shows that pZ is not a fully I-submodule of
M = Z as a Z-module.

Corollary 2.6. Consider M = Z as a Z-module and N = pZ such
that p is a prime number. Then pZ is a kZ-submodule of Z if and only
if (p, k) = 1.

Proof. Let I = kZ be a non-trivial ideal of Z. Clearly, annZ(kZ) = 0.
Take, K = sZ such that (kZ)(sZ) = (ks)Z ⊆ pZ. Then p|ks, so either
p|k or p|s. If p|k, then pZ is not a kZ-submodule of Z. Otherwise, p|s
and so sZ ⊆ pZ, as needed. □
Example 2.7. The submodule N = 3Z is a 2Z-submodule of Z, but
it is not a 3Z-submodule of Z. In fact, N = 3Z is a kZ-submodule if
and only if (3, k) = 1.

Proposition 2.8. Let M be an R-module. Then the following state-
ments are true:

(i) The zero submodule of M is a fully I-submodule.
(ii) Assume that {Ni}i∈Λ is a nonempty set of I-submodules of M

for an ideal I of R. Then
∩

i∈ΛNi is an I-submodule of M .
(iii) Let {Ni}i∈Λ be a chain of I-submodules of a finitely generated

R-module M . Then
∪

i∈Λ Ni is an I-submodule of M .
(iv) If f ∈ EndR(M), then ker(f) = {m ∈ M : f(m) = 0} is a fully

I-submodule of M .
(v) Every minimal submodule of M is a fully I-submodule.
(vi) If annM(I) = 0 for some ideal I of R, then annM(J) is an

I-submodule for every ideal J of R.

Proof. (i) Assume that I is an arbitrary ideal of R and IK = 0 for
some submodule K of M with annM(I) = 0. Then K ⊆ annM(I) = 0,
and so K = 0, as needed.
(ii) Assume that {Ni}i∈Λ is a family of I-submodules of M for some
ideal I of R. If IK ⊆

∩
i∈ΛNi with annM(I) = 0, then IK ⊆ Ni for

each i ∈ Λ such that annM(I) = 0. By assumption, K ⊆ Ni for each
i ∈ Λ so K ⊆

∩
i∈ΛNi and the proof is complete.

(iii) The proof is straightforward.
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(iv) Suppose that IK ⊆ ker(f) for some submodule K of M and an ar-
bitrary ideal I of R. If annM(I) ̸= 0, then we are done. Let annM(I) =
0. Then f(IK) = If(K) = 0 results that f(K) ⊆ annM(I) = 0 and so
K ⊆ ker(f), as needed.
(v) Let N be a minimal submodule of M and IK ⊆ N for some sub-
module K of M and an arbitrary ideal I of R. If annM(I) ̸= 0, then
we are done. Otherwise, assume that annM(I) = 0. By assumption,
IK = 0 or IK = N . If IK = 0, then K ⊆ annM(I) = 0 ⊆ N . Suppose
that IK = N = Rx for some 0 ̸= x ∈ M . Since 0 ̸= IN ⊆ N , hence
IN = N = IK. It follows that (K−N)I = 0, so K−N ⊆ annM(I) = 0.
Thus, K ⊆ N .
(vi) Assume that IL ⊆ annM(J) with annM(I) = 0. Then J(IL) =
I(JL) = 0, so JL ⊆ annM(I) = 0 hence L ⊆ annM(J), as needed. □

Recall that a proper ideal I of R is named an n-ideal if the condition
ab ∈ I with a /∈ rad(0) = {a ∈ R : an = 0 for some n ∈ N} results that
b ∈ I, for each a, b ∈ R.

Theorem 2.9. Let M be a finitely generated multiplication R-module
and N a submodule of M such that (N :R M) is an n-ideal of R.
Then for each ideal I of R such that I ∩ (R − rad(0)) ̸= ∅, N is an
I-submodule of M .
Proof. Assume that IL ⊆ N with annM(I) = 0, where I is an ideal
of R with I ∩ (R − rad(0)) ̸= ∅ and K is a submodule of M . Since
I(L : M)M ⊆ (N : M)M hence I(L : M) ⊆ (N : M) because M is a
cancellation module. By [13, Theorem 2.7], since I ∩ (R− rad(0)) ̸= ∅
and (N : M) is an n-ideal of R, hence (L : M) ⊆ (N : M) so L ⊆ N ,
as needed. □
Theorem 2.10. I-submodules are invariant under isomorphisms.
Proof. Assume that f : M → N is an R-isomorphism, then for every
I ∈ I(R), annM(I) = 0 if and only if annN(I) = 0. Let L be an I-
submodule of M , we show that f(L) is an I-submodule of N . Suppose
that IK ′ ⊆ f(L) for some submodule K ′ of N with annN(I) = 0. By
assumption, there exists a submodule K of M such that f(K) = K ′.
Hence IK ′ = If(K) = f(IK) ⊆ f(L), so IK ⊆ L with annM(I) = 0.
It infer that K ⊆ L since L is an I-submodule of M , so K ′ = f(K) ⊆
f(L), as needed. □
Remark 2.11. A proper ideal I of R is an A-ideal (resp., fully A-ideal) of
R for some ideal A of R, whenever I is an A-submodule (resp., fully A-
submodule) of R as an R-module. In the case, A = R, annM(A) = 0M
and clearly AK = K ⊆ N . Hence as usual every proper submodule N



A GENERALIZATION OF R-SUBMODULES 171

of M is an R-submodule of M . If A = 0, then annM(0) = M ̸= 0M , so
by Definition 2.1 each proper submodule N of M is a 0-submodule of
M . Therefore a proper submodule N of M is a fully A-submodule of
M if it is an A-submodule of M for each non-trivial ideal A of R.

By [8, Example 1], every proper submodule of Z-module Zn for n > 2
is an r-submodule of Zn. In the following example we show that Zn for
n > 2 is a fully I-module.

Example 2.12. Consider the Z-module M = Zn for n > 2 and the
ideal I = kZ of Z. Let N = ⟨s̄⟩ be an arbitrary proper submodule of
Zn such that 0 ≤ s ≤ n − 1. Clearly, (n, s) > 1, since N is proper.
Consider two following cases:
case 1. If (k, n) = 1, then annZn(kZ) = {0̄}. Hence, for submodule
K = ⟨t̄⟩ of Zn the inclusion IK ⊆ ⟨s̄⟩ is true only when s|t if and only
if K ⊆ N , as needed.
case 2. If (k, n) > 1, then annZn(I) ̸= 0M , so we are done. Note that,
annZn(kZ) = ⟨( n

(k,n)
)⟩ = ⟨0̄⟩ if and only if (k, n) = 1. Hence, Zn as a

Z-module is a fully I-module.
Particularly, consider the Z-module M = Z12 and the proper sub-

module N = ⟨3̄⟩. Then Z(Z12) = {a ∈ Z : annZ12(a) ̸= 0̄} = Z − 12Z.
Take, I = 5Z, then annZ12(I) = 0M . Note that, we have the fol-
lowing cases, I⟨0̄⟩ ⊆ ⟨3̄⟩, I⟨6̄⟩ ⊆ ⟨3̄⟩ and I⟨3̄⟩ ⊆ ⟨3̄⟩, hence N is a
5Z-submodule of M . Take, I = 3Z, then annZ12(3Z) = {0̄, 4̄, 8̄} =
⟨4̄⟩ ̸= 0M and so N is a 3Z-submodule of M .

Example 2.13. (i) Consider Z-module Q/Z. Then

E(p) = {α ∈ Q/Z : α =
r

pt
+ Z for t ∈ N ∪ {0}}

is a submodule of Q/Z, where p is a prime number. Then any proper
submodule of E(p) is of the form

Gt0 = {α ∈ Q/Z : α =
r

pt0
+ Z for some r ∈ Z}

for some t0 ∈ N ∪ {0}. By [8, Example 2], Gt0 is an r-submodule of
E(p). Take, I = mZ such that

annGt0
(I) = { r

pt0
+ Z ∈ Gt0 : (

r

pt0
+ Z)(mZ) =

rm

pt0
+ Z = Z} = 0Q/Z.

Hence rm
pt0

∈ Z, so pt0 | rm. Now since (pt0 , r) = 1, hence pt0 |m and so
m = pt0s for some s ∈ Z. Then Z − Z(Z) = {m ∈ Z : m = pt0s}. By
Proposition 2.16, for each ideal I = mZ with m = pt0s for some s ∈ Z,
Gt0 is an I-submodule.
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Recall that an R-module M is considered a comultiplication module
if for every submodule N of M there exists an ideal I of R such that
N = annM(I), see [4]. An R-module M satisfies the double annihilator
condition (briefly, DAC), if for each ideal I of R, I = annR(annM(I)).
Also, M is named a strong comultiplication module, if M is a comul-
tiplication module which satisfies DAC, see [3, Definition 2.1]. For
instance, the Z -module Z2∞ is a comultiplication module since all of
its proper submodules are of the form (0 :M 2kZ) for k = 0, 1, . . .. It
is clear that M is comultiplication if and only if for each submodule
N of M , annM(annR(N)) = N . Note that, if M is a strong comul-
tiplication R-module, then there exists exactly one ideal I of R with
N = annM(I).
Theorem 2.14. Every comultiplication R-module M is a fully I-
module.
Proof. Assume that N is an arbitrary proper submodule of M and I is
an arbitrary ideal of R such that IK ⊆ N for some submodule K of M .
If annM(I) ̸= 0, then we are done. Suppose that, annM(I) = 0. Then,
annK(I) = K ∩ annM(I) = 0. By [2, Theorem 3.17], every submodule
of a comultiplication R-module is a comultiplication R-module, hence
K is a comultiplication R-module and annK(I) = 0, by [4, Proposition
3.1], IK = K ⊆ N , as needed. □
Corollary 2.15. Every non-zero strong comultiplication R-module M
is a fully I-module.
Proof. Clearly, I = R is the only ideal of R with condition annM(I) =
0M and so IK = K ⊆ N for every submodule K of M . □

The converse of Corollary 2.15 is not true in general, since by Ex-
ample 2.12, Zn as a Z-module is a fully I-module for every n > 2,
but Z12 is not a strong comultiplication Z-module, since annZ12(3Z) =
annZ12(9Z) = ⟨4̄⟩ whereas 3Z ̸= 9Z.

Remember that an element r ∈ R is named prime to N if rm ∈ N
(m ∈ M) implies that m ∈ N , that is (N :M r) = {m ∈ M : rm ∈
N} = N . Suppose that S(N) is the set of all elements of R that are
not prime to N . Then N is named primal if S(N) forms an ideal; this
ideal is always a prime ideal, named the adjoint ideal P of N . In this
case, we also say that N is a P -primal submodule of M . If the zero
submodule of M is primal, then M will be called a coprimal module.
Proposition 2.16. Let N be a proper submodule of M . Then the
following are equivalent.

(i) N is an r-submodule of M ;
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(ii) aM ∩N = aN for every a ∈ R− Z(M);
(iii) (N :M a) = N for every a ∈ R− Z(M);
(iv) aN = N for every a ∈ R− Z(M);
(v) N = π−1(L), where S = R−Z(M) and L is an S−1R-submodule

of S−1M ;
(vi) For an ideal I of R such that I ∩ (R − Z(M)) ̸= ∅ and L is a

submodule of M with IL ⊆ N , then L ⊆ N ;
(vii) Every a ∈ R− Z(M) is prime to N .

Proof. By [8, Proposition 4 ], (i)⇔(ii)⇔(iii)⇔(iv) and by [8, Theorem
1], (i)⇔(v). Clearly, (iii)⇔(vii). □
Corollary 2.17. Let N be a proper submodule of M and I an ideal of
R with I ∩ (R − Z(M)) ̸= ∅. Then N is an r-submodule if and only if
N is an I-submodule.
Proof. Assume that a ∈ I∩(R−Z(M)). Then annM(I) ⊆ annM(a) = 0
and so annM(I) = 0. The proof follows from Proposition 2.16. □
Corollary 2.18. Let M be an R-module and N a proper submodule of
M . If S(N) ⊆ Z(M), then N is an r-submodule.
Proof. By assumption, R − Z(M) ⊆ R − S(N). Hence, each a ∈ R −
Z(M) is prime to N , i.e., (N :M a) = N for every a ∈ R−Z(M). Then
by Proposition 2.16, N is a r-submodule, as needed. □
Theorem 2.19. Let M be a McCoy R-module and I a finitely generated
ideal of R. Then the proper submodule N is an r-submodule of M if
and only if N is an I-submodule of M .
Proof. Assume that IL ⊆ N for some submodule L of M . If annM(I) ̸=
0, then we are done. Let I be a non-zero finitely generated ideal of
R with annM(I) = 0, then I ⊈ Z(M), since M is MacCoy and so
I ∩ (R − Z(M)) ̸= ∅. By Corollary 2.17, in this case, a submodule N
of M is an r-submodule if and only if N is an I-submodule. □
Corollary 2.20. Let M be a finitely generated module over a Noe-
therian ring R. Then N is an r-submodule if and only if M is a fully
I-module.
Proof. The proof is straightforward, since by [7, Theorem 82], every
finitely generated module M over a Noetherian ring R is a MacCoy
module. Hence the proof follows from Theorem 2.19. □

Recall that a non-zero submodule N of M is named second submodule
if for each a ∈ R the homothety N

a−→ N is either surjective or zero.
This implies that annR(N) = p is a prime ideal of R, and N is named
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p-second submodule of M . Also, the R-module M is named divisible if
for each x ∈ M and for each non-zero divisor r ∈ R there exists y ∈ M
such that x = ry. The dual notion of Z(M), the set of zero divisors of
M , is denoted by W(M), defined as follows:
W(M) = {r ∈ R |M r−→ M is not surjective} = {r ∈ R | rM ̸= M}.

Theorem 2.21. Let M be a R-module and N ∈ Spec(M). If ann(N) =
Z(M), then the following are equivalent.

(i) N is a ann(N)-second submodule of M ;
(ii) N is a divisible R/ann(N)-module;
(iii) rN = N for all r ∈ R− ann(N);
(iv) IN = N for all ideal I ⊈ ann(N);
(v) W(N) = ann(N);
(vi) N is an r-submodule.

Proof. (i) ⇔ (ii) The proof is straightforward.
(i) ⇔ (iii) Clearly, p = ann(N) is a proper prime ideal of R. By
assumption, for every r ∈ R− p, since rN ̸= 0, then rN = N , because
N is a p-second submodule of M . Conversely, if r ∈ p, then rN = 0.
Otherwise, if r ∈ R − p, then by assumption, rN = N . Hence, N is a
p-second submodule of M .
(iii) ⇒ (iv) ⇒ (v) are clear.
(v) ⇒ (i) Assume that, p = ann(N) = W(N). Then for every r ∈ R
either r ∈ p or r ∈ R−p. Hence, either rN = 0 or rN = N , as needed.
(iii) ⇔ (vi) The proof is clear by Proposition 2.16 (iv). □
Proposition 2.22. Let M be an R-module and N a proper submodule
of M . If N is an I-submodule for some ideal I of R, then N is an
J-submodule for every ideal J ⊃ I of R with annM(I) = annM(J).

Proof. Assume that J ⊃ I is an ideal of R such that JK ⊆ N for
some submodule K of M . If annM(J) ̸= 0, then we are done. Suppose
that annM(J) = 0. By assumption, since N is an I-submodule and
IK ⊆ JK ⊆ N with annM(I) = 0 results that K ⊆ N , as needed. □
Proposition 2.23. Let M be a module on a PID R and N a proper
submodule of M . Then the following assertions hold.

(i) N is an r-submodule if and only if N is an I-submodule for
ideal I = Ra of R.

(ii) M is a fully pure module if and only if M is a fully I-module.

Proof. (i) Assume that N is an r-submodule, I = Ra is an arbitrary
ideal of R for some a ∈ R and IK ⊆ N for some submodule K of
M . If a ∈ Z(M), then annM(a) = annM(I) ̸= 0 and we are done.
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Now, if a /∈ Z(M), then annM(a) = annM(I) = 0. By Proposition
2.16 (vi), N is an I-submodule, since I ∩ (R−Z(M)) ̸= ∅. Conversely,
assume that am ∈ N with annM(a) = 0 for a ∈ R and m ∈ M . Take,
I = Ra and K = Rm. Again, since annM(a) = annM(I) = 0 and
IK = (Ra)(Rm) ⊆ N , hence K ⊆ N which results that m ∈ N , as
needed.
(ii) Suppose N is an arbitrary submodule of M and I = Ra is an
arbitrary ideal of R. By assumption, IM ∩ N = IN for each ideal
I of R. In particular, aM ∩ N = aN for each a ∈ R − Z(M). By
Proposition 2.16 (ii), N is an r-submodule of M and by part (i), N is
an I-submodule of M , as needed. The converse is clear by part (i) and
Proposition 2.16 (ii). □
Proposition 2.24. Suppose that N is an I-submodule of M for some
ideal I of R, and S is a nonempty subset of R. Then (N :M S) is an
I-submodule of M .
Proof. Assume that IK ⊆ (N :M S) for some submodule K of M and
ideal I of R with annM(I) = 0M . Then s(IK) = I(sK) ⊆ N for each
s ∈ S. By assumption, since N is an I-submodule of M , hence sK ⊆ N
for each s ∈ S and so K ⊆ (N :M S), as needed. □
Corollary 2.25. For every ideal I of R, annM(I) is an I-submodule.
Proof. If annM(I) ̸= 0, then we are down. Otherwise, take, S = I and
N = 0M in Propostion 2.24. □

Recall that a proper submodule P of M is named prime if rm ∈ P
for r ∈ R and m ∈ M conclude that m ∈ P or r ∈ (P :R M). Let
SpecR(M) denote the collection of prime submodules of M . It is shown
that a proper submodule P of M is prime if and only if for each ideal I
of R and submodule K of M with IK ⊆ P , then either I ⊆ (P :R M)
or K ⊆ P .

Proposition 2.26. Let M be an R-module, P a proper submodule of
M and I a non-zero ideal of R. If P is prime with I ⊈ Z(M/P ), then
P is an I-submodule of M .
Proof. Assume that P ∈ SpecR(M). Clearly, if for some ideal I of R,
I ⊈ (P : M), then P is an I-submodule of M . Let IK ⊆ P for some
ideal I of R and submodule K of M with annM(I) = 0. Since P is a
prime submodule, hence Z(M/P ) = (P :R M). It results that K ⊆ P
since I ⊈ Z(M/P ), as needed. □

In the following definition, we generalize the definition of nonregular
submodule to the nonregular submodule with respect to an ideal I of
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R. Recall that a proper submodule N of an R-module M is called
nonregular, if aM ⊆ N implies that annM(a) ̸= 0M , for each a ∈ R.
If we consider R as an R-module, then this definition agrees with the
concept of nonregular ideal, see ([10, Definition 2.17]).

Definition 2.27. A proper submodule N of an R-module M is non-
regular with respect to an ideal I of R, if I ⊆ (N : M) results that
annM(I) ̸= 0M .

Theorem 2.28. Let M be an R-module and I an ideal of R. Then the
following statements are true.

(i) Every I-submodule of M is nonregular with respect to I.
(ii) Every prime nonregular submodule N of M with respect to I is

an I-submodule.

Proof. (i) Assume that N is an I-submodule and I ⊆ (N : M). Then
IM ⊆ N . If annM(I) = 0M , then by assumption, N = M which is a
contradiction. Hence annM(I) ̸= 0M , as needed.
(ii) Suppose that IK ⊆ N for some submodule K of M with annM(I) =
0M . It results that I ⊈ (N : M), because otherwise by assumption
annM(I) ̸= 0M which is a contradiction. Since N is prime, hence
K ⊆ N , as needed. □

3. Special I-submodules

In this section, we present the concept of special I-submodules of an
R-module M . Also, we extend the concept of special r-submodules to
the fully special I-submodules. Remember that a submodule N of M is
named a special r-submodule (briefly, sr-submodule) if N ̸= M , for each
a ∈ R, m ∈ M with am ∈ N and annR(m) = 0, then a ∈ (N :R M),
see [8, Definition 4].

Definition 3.1. Let M be an R-module and N a proper submodule
of M .

(i) N is a special I-submodule for an ideal I of R if for each
submodule L of M , IL ⊆ N with annR(L) = 0 results that
I ⊆ (N :R M).

(ii) N is a fully special I-submodule, if N is a special submodule
with respect to every proper ideal J of R. Equivalently, N is a
fully special I-submodule of M , if JL ⊆ N with annR(L) = 0
results that J ⊆ (N :R M) for each submodule L of M and
each ideal J of R.

(iii) If each proper submodule N of M is a fully special I-submodule
of M , then we say that M is a fully special I-module.
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In particular, an ideal I of R is a special A-ideal of R, if I is a special
A-submodule of R as an R-module, i.e., AB ⊆ I for each ideal B of R
with annR(B) = 0 results that A ⊆ I.
Remark 3.2. Cleary, every fully special I-submodule is a sr-submodule
(take, I = Ra and L = Rm). The converse is not true in general case.

Recall that an R-module M is named a cancellation module, if IM ⊆
JM results that I ⊆ J for all ideals I and J of R .
Theorem 3.3. Let M be a faithful multiplication R-module. If N is
a special A-submodule of M , then (N : M) is a special A-ideal of R.
The converse is true if M is finitely generated.
Proof. Assume that N is a special A-submodule of M such that AB ⊆
(N : M) for some ideals A,B of R with annR(A) = 0. Then, ABM =
B(AM) ⊆ N = (N : M)M . By assumption, annR(A) = annR(AM) =
0 implies that BM ⊆ N . Hence B ⊆ (N : M), as needed. Conversely,
suppose that (N : M) is a special A-ideal of R and AL ⊆ N such
that A is an ideal of R and L a submodule of M with annR(L) = 0.
Then, A(L : M)M ⊆ (N : M)M , so A(L : M) ⊆ (N : M) because
every finitely generated faithful R-module M is a cancellation module
and also, annR(L) = annR((L : M)) = 0. By assumption, A ⊆ (N :
M). □
Proposition 3.4. Let M be an R-module. If a proper submodule N
of M is a fully special I-submodule, then N is an sr-submodule. The
converse is true if M is torsion-free.
Proof. Assume that a ∈ R, m ∈ M with am ∈ N and annR(m) = 0.
Take, I = Ra, L = Rm. Hence IL ⊆ N and annR(L) = 0. By
assumption, I = Ra ⊆ (N :R M) and so a ∈ (N :R M), as needed.
Conversely, assume that L is a submodule of M with IL ⊆ N and
annR(L) = 0 for each arbitrary ideal I of R. Since T (M) = 0, hence
L ∩ (M − T (M)) = L ̸= ∅. By [8, Theorem 10 (i)], I ⊆ (N :R M), as
needed. □
Example 3.5. Consider M = Zn as a Z-module. Take, N = ⟨s̄⟩
(0 ≤ s ≤ n − 1) with (n, s) = d > 1 and I = kZ an ideal of Z. Let
L = ⟨t̄⟩ such that IL = (kZ)(⟨t̄⟩) ⊆ ⟨s̄⟩. Then we have the following
cases,

(i) If t = 0, then I⟨0̄⟩ ⊆ ⟨s̄⟩, with annZ(⟨0̄⟩) = Z ̸= 0.
(ii) If t ̸= 0, then s | kt with annZ(⟨t̄⟩) = n

(n,t)
Z ̸= 0.

Hence N is a fully special I-submodule, so M is fully special I-module.
In this case, all proper submodules of Zn are sr-submodules. If (t, n) =
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1, then L = M , so annZ(Zn) = nZ ̸= 0 and we are done. Also, if
(t, n) > 1, then annZ(L) = annZ(⟨t̄⟩) = n

(t,n)
Z ̸= 0.
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