Journal of Algebra and Related Topics Vol. 12, No 02, (2024), pp 165-178

A GENERALIZATION OF *r*-SUBMODULES

S. RAJAEE

ABSTRACT. Let R be a commutative ring with identity $1 \neq 0$ and M a non-zero unital R-module. In this paper, we present the concept of fully I-submodules of M such that I is an ideal of Rwhich is a generalization of r-submodules. Consider that I is an ideal of R, a proper submodule N of M is a fully I-submodule if $JK \subseteq N$ with $\operatorname{ann}_M(J) = 0_M$ results that $K \subseteq N$ for each submodule K of M and each ideal J of R. In addition, we present the concept of fully special I-submodules which is a generalization of special r-submodules. A proper submodule N of M is a fully special I-submodule if the inclusion $IL \subseteq N$ with $\operatorname{ann}_R(L) = 0_R$, implies that $I \subseteq (N : M)$ for each submodule L of M and each ideal J of R. We explore certain outcomes related to these categories of submodules.

1. INTRODUCTION

In this paper, R is a commutative ring with a non-zero identity, and M is a unitary R-module. For each subset S of R, we denote by ann_M(S) the set of elements $m \in M$ such that ma = 0 for each $a \in S$. In particular, for $a \in R$, ann_M(a) = { $m \in M : am = 0$ } is named an *annihilator submodule* of M. An element $a \in R$ is named a *zero-divisor* on M provided that there exists $0 \neq m \in M$ such that am = 0, that is ann_M(a) $\neq 0$. We denote by $Z_R(M)$ (for short Z(M)) the collection of all zero-divisors of R on M, i.e., $Z(M) = \{a \in R : ann_M(a) \neq 0_M\}$. Note that the set $S = R - Z_R(M)$ is a multiplicatively closed subset of R (i.e., $0 \notin S$, $1 \in S$ and for $a, b \in S$, $ab \in S$). If we consider R as an

MSC(2010): Primary: 13C99; Secondary: 13A15

Keywords: r-submodule, I-submodule, sr-submodule, special I-submodule.

Received: 10 July 2024, Accepted: 2 November 2024.

R-module, then we write Z(R) instead of $Z_R(R)$. An *R*-module *M* is named a *McCoy module* provided that for every finitely generated ideal *I* of *R* with $I \subseteq Z(M)$, $\operatorname{ann}_M(I) \neq 0$. This is a natural extension of the concept of a McCoy ring, see [6]. If *N* is an irreducible submodule of *M*, then *M/N* is a McCoy *R*-module. For an *R*-module *M*, Z(M)need not be an ideal of *R* in general. For instance, take $M = \mathbb{Z}_2 \times \mathbb{Z}_3$ as a \mathbb{Z} -module. Then one can check that $Z(M) = 2\mathbb{Z} \cup 3\mathbb{Z}$. Of course, in this case, since \mathbb{Z} is a PID, *M* is McCoy.

The concept of r-ideals was introduced and studied by Mohamadian in [9]. A proper ideal I of R is named an r-ideal if $ab \in I$ and $\operatorname{ann}_{R}(a) =$ $\{r \in R : ra = 0\} = 0$ results that $b \in I$ for each $a, b \in R$. In [8], the authors introduced and studied two different generalizations of r-ideals to modules by r-submodules and sr-submodules. A proper submodule N of M is named an r-submodule if $am \in N$ with $\operatorname{ann}_M(a) = 0_M$ implies that $m \in N$ for each $a \in R, m \in M$. Some preliminary properties of r- submodules are given in [10, Remark 2.2, Proposition [2.3]. Also, a proper submodule N of M is named a special r-submodule (briefly, sr-submodule) if for every $m \in M$ and $a \in R$, $am \in N$ with $\operatorname{ann}_R(m) = 0_R$ results that $a \in (N : M)$. Let R be any ring and let us consider R as a module over itself. Since that the submodules of R are ideals in R, one can easily show that I is an r-ideal if and only if I as a submodule is an r-submodule. The reader is referred to [8] and [9] for a more detailed discussions. The main purpose of this article is to generalize the concepts of r-submodules and sr-submodules to the fully *I*-submodules and fully special *I*-submodules, respectively, see Definition 2.1 and Definition 3.1.

An element m of an R-module M is named a *torsion element* if there exists a regular element r of R (r is not a zero-divisor of R) such that rm = 0. The collection of all torsion elements of M is named the *torsion submodule* of M, denoted by $T_R(M)$. In fact, $T_R(M) = \{m \in$ $M : \operatorname{ann}_R(m) \neq 0\}$. An R-module M satisfies Property \mathcal{T} if for every finitely generated submodule N of M with $N \subseteq T_R(M)$ there exists a non-zero $r \in R$ with rN = 0, or equivalently $\operatorname{ann}_R(N) \neq 0$.

Also, $\mathcal{Z}(M) = \{m \in M : \operatorname{ann}_R(m) \text{ is an essential ideal in } R\}$ is a submodule of M, which is named singular submodule. If $\mathcal{Z}(M) = M$, (resp., $\mathcal{Z}(M) = (0)$), then M is named singular (resp., nonsingular) module. A module M over a ring R is called a torsion module if all its elements are torsion elements, i.e., T(M) = M and torsion-free if T(M) = 0. The torsion submodule of M is an r-submodule and also, if R is a domain, then $\mathcal{Z}(M)$ is an r-submodule, see [10, Proposition 2.12].

Note that, if $X \subseteq M$ and N is the submodule of M generated by X, then in general $\operatorname{ann}_R(N)$ is a subset of $\operatorname{ann}_R(X)$, but they are not necessarily equal. If R is commutative, then the equality holds. A module M on an integral domain (a commutative ring without zerodivisors), R with $\operatorname{ann}_R(M) \neq 0$ is a torsion module. In addition, a finitely generated torsion module has a non-zero annihilator. A module M is a multiplication module whenever for each submodule N of M there exists an ideal I of R where N = IM. It is shown that, in this case, $N = (N :_R M)M$, we direct the reader to [5, 9, 10, 11, 12].

2. A GENERALIZATION OF *r*-SUBMODULES

In this section, we expand upon the definition and findings presented in [8] to encompass a broader fully *I*-submodule scenario for an ideal *I* of *R*. Remember that a proper submodule *N* of a module *M* over a commutative ring *R* is named an *n*-submodule, if for $a \in R, x \in M$, $ax \in N$ with $a \notin \sqrt{\operatorname{ann}(M)}$, then $x \in N$. By [1, Theorem 2.2], the following statements are equivalent: (i) *N* is an *n*-submodule of *M*; (ii) $N = (N :_M a)$ for every $a \notin \sqrt{\operatorname{ann}(M)}$; (iii) for every ideal *I* of *R* and submodule *K* of *M*, $IK \subseteq N$ with $I \notin \sqrt{\operatorname{ann}(M)}$, implies that $K \subseteq N$.

We initiate with the definition outlined.

Definition 2.1. Let M be a non-zero R-module, N a proper submodule of M and I a non-zero ideal of R. Subsequently, we declare that

- (i) N is an *I*-submodule of M if $IK \subseteq N$ with $\operatorname{ann}_M(I) = 0_M$ results that $K \subseteq N$ for each submodule K of M. Equivalently, if for each submodule K of M, $I \subseteq (N :_R K)$ with $\operatorname{ann}_M(I) = 0_M$ results that $(N :_R K) = R$.
- (ii) N is a fully I-submodule of M if the inclusion $JK \subseteq N$ with $\operatorname{ann}_M(J) = 0_M$ results that $K \subseteq N$ for each submodule K of M and each ideal J of R.
- (iii) M is a *fully I-module* if each submodule N of M is a fully *I*-submodule.

Remark 2.2. Note that $I \subseteq (N : K) \subseteq R$ with $\operatorname{ann}_M(I) = 0_M$ results that (N : K) = R shows that I is a maximal ideal in the following collection

$$\Lambda := \{ I \in \mathbb{I}(R) : K \le M \text{ and } I \subseteq (N : K), \operatorname{ann}_M(I) = 0_M \}.$$

In particular, when N is an I-submodule, if IK = N and $\operatorname{ann}_M(I) = 0_M$, then $N \subseteq K$ and $K \subseteq N$ result that K = N.

In the following example (iii), we show that the concepts of r-submodule and I-submodule are different in general case. In fact, if N is a fully I-submodule of M, then N is an r-submodule of M.

Example 2.3. (i) Let M be a non-zero module on a field R. Then M is a fully I-module.

(ii) Consider \mathbb{Q} as a \mathbb{Z} -module, $N = \mathbb{Z}$, $K = \frac{1}{s}\mathbb{Z}$ and $I = s\mathbb{Z}$. Then $\operatorname{ann}_{\mathbb{Q}}(s\mathbb{Z}) = 0$ and $(s\mathbb{Z})(\frac{1}{s}\mathbb{Z}) = \mathbb{Z} \subseteq N$, but $\frac{1}{s}\mathbb{Z} \notin \mathbb{Z}$. Hence \mathbb{Z} is not a $s\mathbb{Z}$ -submodule of \mathbb{Q} as a \mathbb{Z} -module for every ideal $s\mathbb{Z}$ of \mathbb{Z} .

(iii) Consider $M = \mathbb{Z}$ as a \mathbb{Z} -module and the submodule $N = 2\mathbb{Z}$ of M. Clearly, N is not an r-submodule of M since $2.3 \in N$ with $\operatorname{ann}_{\mathbb{Z}}(2) = 0$ but $3 \notin N$. We have two following cases:

case 1. Take, $I = (2t + 1)\mathbb{Z}$, then N is an *I*-submodule of M since for every submodule $K = s\mathbb{Z}$ of \mathbb{Z} , $IK \subseteq 2\mathbb{Z}$ with $\operatorname{ann}_{\mathbb{Z}}(I) = 0$ implies that $2 \mid (2t + 1)s$ and so $2 \mid s$ hence $K \subseteq N$. Therefore, $N = 2\mathbb{Z}$ is a $(2t + 1)\mathbb{Z}$ -submodule of \mathbb{Z} for each $t \in \mathbb{N}$.

case 2. Now take, $J = (2t)\mathbb{Z}$, then $N = 2\mathbb{Z}$ is not a *J*-submodule of *M* because for $K = 3\mathbb{Z}$, $J(3\mathbb{Z}) \subseteq 2\mathbb{Z}$ and $\operatorname{ann}_{\mathbb{Z}}(J) = 0$ but $3\mathbb{Z} \not\subseteq 2\mathbb{Z}$. Hence *N* is not a *J*-submodule of *M*.

From these two situations, we conclude that $2\mathbb{Z}$ is not a fully *I*-submodule of \mathbb{Z} as a \mathbb{Z} -module.

Theorem 2.4. Let M be a faithful R-module with prime zero submodule. Then the following statements are equivalent.

- (i) N is an r-submodule of M;
- (ii) For every $0 \neq a \in R$ and $m \in M$, $a \in (N :_R m)$ if and only if $(N :_R m) = R$;
- (iii) For every finitely generated ideal I of R and submodule K of $M, I \subseteq (N :_R K)$ if and only if $(N :_R K) = R$.
- (iv) For every finitely generated ideal I of R, N is an I-submodule.

Proof. (i \Rightarrow ii) Clearly, the zero submodule of a faithful module M is prime if and only if $\operatorname{ann}_M(a) = (0)$, for any $0 \neq a \in R$. Now, assume that N is an r-submodule of M and $a \in (N :_R m)$. By assumption, $am \in N$ with $\operatorname{ann}_M(a) = (0)$ results that $m \in N$ so $(N :_R m) = R$. (ii \Rightarrow i) It is clear.

 $(i \Rightarrow iii)$ Assume that $I = (a_1, \ldots, a_s)$. Then

$$\operatorname{ann}_{M}(I) = \operatorname{ann}_{M}(\sum_{i=1}^{s} a_{i}R) = \bigcap_{i=1}^{s} \operatorname{ann}_{M}(a_{i}R) = 0.$$

If $I \subseteq (N :_R K)$, then $IK \subseteq N$ with $\operatorname{ann}_M(I) = 0$. Take, $m \in K$. By assumption, for every $0 \neq a_i \in I$ $(1 \leq i \leq s)$, $a_i m \in IK \subseteq N$ with $\operatorname{ann}_M(a_i) = 0$ implies that $m \in N$ so $K \subseteq N$ hence $(N :_R K) = R$, as

needed. The converse is clear. (iii \Rightarrow ii) Take, I = (a) and K = Rm. (iii \Leftrightarrow iv) It is clear.

Corollary 2.5. Let M be a faithful module with $0 \in \text{Spec}(M)$ over a Noetherian ring R and N a proper submodule of M. Then N is an r-submodule if and only if N is a fully I-submodule.

The following corollary shows that $p\mathbb{Z}$ is not a fully *I*-submodule of $M = \mathbb{Z}$ as a \mathbb{Z} -module.

Corollary 2.6. Consider $M = \mathbb{Z}$ as a \mathbb{Z} -module and $N = p\mathbb{Z}$ such that p is a prime number. Then $p\mathbb{Z}$ is a $k\mathbb{Z}$ -submodule of \mathbb{Z} if and only if (p, k) = 1.

Proof. Let $I = k\mathbb{Z}$ be a non-trivial ideal of \mathbb{Z} . Clearly, $\operatorname{ann}_{\mathbb{Z}}(k\mathbb{Z}) = 0$. Take, $K = s\mathbb{Z}$ such that $(k\mathbb{Z})(s\mathbb{Z}) = (ks)\mathbb{Z} \subseteq p\mathbb{Z}$. Then p|ks, so either p|k or p|s. If p|k, then $p\mathbb{Z}$ is not a $k\mathbb{Z}$ -submodule of \mathbb{Z} . Otherwise, p|s and so $s\mathbb{Z} \subseteq p\mathbb{Z}$, as needed.

Example 2.7. The submodule $N = 3\mathbb{Z}$ is a 2 \mathbb{Z} -submodule of \mathbb{Z} , but it is not a 3 \mathbb{Z} -submodule of \mathbb{Z} . In fact, $N = 3\mathbb{Z}$ is a $k\mathbb{Z}$ -submodule if and only if (3, k) = 1.

Proposition 2.8. Let M be an R-module. Then the following statements are true:

- (i) The zero submodule of M is a fully I-submodule.
- (ii) Assume that $\{N_i\}_{i \in \Lambda}$ is a nonempty set of *I*-submodules of *M* for an ideal *I* of *R*. Then $\bigcap_{i \in \Lambda} N_i$ is an *I*-submodule of *M*.
- (iii) Let $\{N_i\}_{i \in \Lambda}$ be a chain of *I*-submodules of a finitely generated *R*-module *M*. Then $\bigcup_{i \in \Lambda} N_i$ is an *I*-submodule of *M*.
- (iv) If $f \in \operatorname{End}_R(M)$, then $\ker(f) = \{m \in M : f(m) = 0\}$ is a fully *I*-submodule of *M*.
- (v) Every minimal submodule of M is a fully I-submodule.
- (vi) If $\operatorname{ann}_M(I) = 0$ for some ideal I of R, then $\operatorname{ann}_M(J)$ is an I-submodule for every ideal J of R.

Proof. (i) Assume that I is an arbitrary ideal of R and IK = 0 for some submodule K of M with $\operatorname{ann}_M(I) = 0$. Then $K \subseteq \operatorname{ann}_M(I) = 0$, and so K = 0, as needed.

(ii) Assume that $\{N_i\}_{i\in\Lambda}$ is a family of *I*-submodules of *M* for some ideal *I* of *R*. If $IK \subseteq \bigcap_{i\in\Lambda} N_i$ with $\operatorname{ann}_M(I) = 0$, then $IK \subseteq N_i$ for each $i \in \Lambda$ such that $\operatorname{ann}_M(I) = 0$. By assumption, $K \subseteq N_i$ for each $i \in \Lambda$ so $K \subseteq \bigcap_{i\in\Lambda} N_i$ and the proof is complete.

(iii) The proof is straightforward.

(iv) Suppose that $IK \subseteq \ker(f)$ for some submodule K of M and an arbitrary ideal I of R. If $\operatorname{ann}_M(I) \neq 0$, then we are done. Let $\operatorname{ann}_M(I) = 0$. Then f(IK) = If(K) = 0 results that $f(K) \subseteq \operatorname{ann}_M(I) = 0$ and so $K \subseteq \ker(f)$, as needed.

(v) Let N be a minimal submodule of M and $IK \subseteq N$ for some submodule K of M and an arbitrary ideal I of R. If $\operatorname{ann}_M(I) \neq 0$, then we are done. Otherwise, assume that $\operatorname{ann}_M(I) = 0$. By assumption, IK = 0 or IK = N. If IK = 0, then $K \subseteq \operatorname{ann}_M(I) = 0 \subseteq N$. Suppose that IK = N = Rx for some $0 \neq x \in M$. Since $0 \neq IN \subseteq N$, hence IN = N = IK. It follows that (K-N)I = 0, so $K-N \subseteq \operatorname{ann}_M(I) = 0$. Thus, $K \subseteq N$.

(vi) Assume that $IL \subseteq \operatorname{ann}_M(J)$ with $\operatorname{ann}_M(I) = 0$. Then J(IL) = I(JL) = 0, so $JL \subseteq \operatorname{ann}_M(I) = 0$ hence $L \subseteq \operatorname{ann}_M(J)$, as needed. \Box

Recall that a proper ideal I of R is named an *n*-ideal if the condition $ab \in I$ with $a \notin rad(0) = \{a \in R : a^n = 0 \text{ for some } n \in \mathbb{N}\}$ results that $b \in I$, for each $a, b \in R$.

Theorem 2.9. Let M be a finitely generated multiplication R-module and N a submodule of M such that $(N :_R M)$ is an n-ideal of R. Then for each ideal I of R such that $I \cap (R - \operatorname{rad}(0)) \neq \emptyset$, N is an I-submodule of M.

Proof. Assume that $IL \subseteq N$ with $\operatorname{ann}_M(I) = 0$, where I is an ideal of R with $I \cap (R - \operatorname{rad}(0)) \neq \emptyset$ and K is a submodule of M. Since $I(L:M)M \subseteq (N:M)M$ hence $I(L:M) \subseteq (N:M)$ because M is a cancellation module. By [13, Theorem 2.7], since $I \cap (R - \operatorname{rad}(0)) \neq \emptyset$ and (N:M) is an n-ideal of R, hence $(L:M) \subseteq (N:M)$ so $L \subseteq N$, as needed. \Box

Theorem 2.10. *I*-submodules are invariant under isomorphisms.

Proof. Assume that $f: M \to N$ is an R-isomorphism, then for every $I \in \mathbb{I}(R)$, $\operatorname{ann}_M(I) = 0$ if and only if $\operatorname{ann}_N(I) = 0$. Let L be an I-submodule of M, we show that f(L) is an I-submodule of N. Suppose that $IK' \subseteq f(L)$ for some submodule K' of N with $\operatorname{ann}_N(I) = 0$. By assumption, there exists a submodule K of M such that f(K) = K'. Hence $IK' = If(K) = f(IK) \subseteq f(L)$, so $IK \subseteq L$ with $\operatorname{ann}_M(I) = 0$. It infer that $K \subseteq L$ since L is an I-submodule of M, so $K' = f(K) \subseteq f(L)$, as needed.

Remark 2.11. A proper ideal I of R is an A-ideal (resp., fully A-ideal) of R for some ideal A of R, whenever I is an A-submodule (resp., fully A-submodule) of R as an R-module. In the case, A = R, $\operatorname{ann}_M(A) = 0_M$ and clearly $AK = K \subseteq N$. Hence as usual every proper submodule N

of M is an R-submodule of M. If A = 0, then $\operatorname{ann}_M(0) = M \neq 0_M$, so by Definition 2.1 each proper submodule N of M is a 0-submodule of M. Therefore a proper submodule N of M is a fully A-submodule of M if it is an A-submodule of M for each non-trivial ideal A of R.

By [8, Example 1], every proper submodule of \mathbb{Z} -module \mathbb{Z}_n for n > 2 is an *r*-submodule of \mathbb{Z}_n . In the following example we show that \mathbb{Z}_n for n > 2 is a fully *I*-module.

Example 2.12. Consider the \mathbb{Z} -module $M = \mathbb{Z}_n$ for n > 2 and the ideal $I = k\mathbb{Z}$ of \mathbb{Z} . Let $N = \langle \overline{s} \rangle$ be an arbitrary proper submodule of \mathbb{Z}_n such that $0 \leq s \leq n - 1$. Clearly, (n, s) > 1, since N is proper. Consider two following cases:

case 1. If (k, n) = 1, then $\operatorname{ann}_{\mathbb{Z}_n}(k\mathbb{Z}) = \{\overline{0}\}$. Hence, for submodule $K = \langle \overline{t} \rangle$ of \mathbb{Z}_n the inclusion $IK \subseteq \langle \overline{s} \rangle$ is true only when s|t if and only if $K \subseteq N$, as needed.

case 2. If (k, n) > 1, then $\operatorname{ann}_{\mathbb{Z}_n}(I) \neq 0_M$, so we are done. Note that, $\operatorname{ann}_{\mathbb{Z}_n}(k\mathbb{Z}) = \langle \overline{(\frac{n}{(k,n)})} \rangle = \langle \overline{0} \rangle$ if and only if (k, n) = 1. Hence, \mathbb{Z}_n as a \mathbb{Z} -module is a fully *I*-module.

Particularly, consider the \mathbb{Z} -module $M = \mathbb{Z}_{12}$ and the proper submodule $N = \langle \bar{3} \rangle$. Then $\mathbb{Z}(\mathbb{Z}_{12}) = \{a \in \mathbb{Z} : \operatorname{ann}_{\mathbb{Z}_{12}}(a) \neq \bar{0}\} = \mathbb{Z} - 12\mathbb{Z}$. Take, $I = 5\mathbb{Z}$, then $\operatorname{ann}_{\mathbb{Z}_{12}}(I) = 0_M$. Note that, we have the following cases, $I\langle \bar{0} \rangle \subseteq \langle \bar{3} \rangle$, $I\langle \bar{6} \rangle \subseteq \langle \bar{3} \rangle$ and $I\langle \bar{3} \rangle \subseteq \langle \bar{3} \rangle$, hence N is a 5 \mathbb{Z} -submodule of M. Take, $I = 3\mathbb{Z}$, then $\operatorname{ann}_{\mathbb{Z}_{12}}(3\mathbb{Z}) = \{\bar{0}, \bar{4}, \bar{8}\} = \langle \bar{4} \rangle \neq 0_M$ and so N is a 3 \mathbb{Z} -submodule of M.

Example 2.13. (i) Consider \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} . Then

$$E(p) = \{ \alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = \frac{r}{p^t} + \mathbb{Z} \text{ for } t \in \mathbb{N} \cup \{0\} \}$$

is a submodule of \mathbb{Q}/\mathbb{Z} , where p is a prime number. Then any proper submodule of E(p) is of the form

$$G_{t_0} = \{ \alpha \in \mathbb{Q}/\mathbb{Z} : \alpha = \frac{r}{p^{t_0}} + \mathbb{Z} \text{ for some } r \in \mathbb{Z} \}$$

for some $t_0 \in \mathbb{N} \cup \{0\}$. By [8, Example 2], G_{t_0} is an *r*-submodule of E(p). Take, $I = m\mathbb{Z}$ such that

$$\operatorname{ann}_{G_{t_0}}(I) = \{ \frac{r}{p^{t_0}} + \mathbb{Z} \in G_{t_0} : (\frac{r}{p^{t_0}} + \mathbb{Z})(m\mathbb{Z}) = \frac{rm}{p^{t_0}} + \mathbb{Z} = \mathbb{Z} \} = 0_{\mathbb{Q}/\mathbb{Z}}.$$

Hence $\frac{rm}{p^{t_0}} \in \mathbb{Z}$, so $p^{t_0} | rm$. Now since $(p^{t_0}, r) = 1$, hence $p^{t_0} | m$ and so $m = p^{t_0}s$ for some $s \in \mathbb{Z}$. Then $\mathbb{Z} - \mathbb{Z}(\mathbb{Z}) = \{m \in \mathbb{Z} : m = p^{t_0}s\}$. By Proposition 2.16, for each ideal $I = m\mathbb{Z}$ with $m = p^{t_0}s$ for some $s \in \mathbb{Z}$, G_{t_0} is an *I*-submodule.

Recall that an *R*-module *M* is considered a comultiplication module if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = \operatorname{ann}_M(I)$, see [4]. An *R*-module *M* satisfies the double annihilator condition (briefly, DAC), if for each ideal *I* of *R*, $I = \operatorname{ann}_R(\operatorname{ann}_M(I))$. Also, *M* is named a strong comultiplication module, if *M* is a comultiplication module which satisfies DAC, see [3, Definition 2.1]. For instance, the \mathbb{Z} -module $\mathbb{Z}_{2^{\infty}}$ is a comultiplication module since all of its proper submodules are of the form $(0:_M 2^k \mathbb{Z})$ for $k = 0, 1, \ldots$. It is clear that *M* is comultiplication if and only if for each submodule *N* of *M*, $\operatorname{ann}_M(\operatorname{ann}_R(N)) = N$. Note that, if *M* is a strong comultiplication *R*-module, then there exists exactly one ideal *I* of *R* with $N = \operatorname{ann}_M(I)$.

Theorem 2.14. Every comultiplication *R*-module *M* is a fully *I*-module.

Proof. Assume that N is an arbitrary proper submodule of M and I is an arbitrary ideal of R such that $IK \subseteq N$ for some submodule K of M. If $\operatorname{ann}_M(I) \neq 0$, then we are done. Suppose that, $\operatorname{ann}_M(I) = 0$. Then, $\operatorname{ann}_K(I) = K \cap \operatorname{ann}_M(I) = 0$. By [2, Theorem 3.17], every submodule of a comultiplication R-module is a comultiplication R-module, hence K is a comultiplication R-module and $\operatorname{ann}_K(I) = 0$, by [4, Proposition 3.1], $IK = K \subseteq N$, as needed. \Box

Corollary 2.15. Every non-zero strong comultiplication *R*-module *M* is a fully *I*-module.

Proof. Clearly, I = R is the only ideal of R with condition $\operatorname{ann}_M(I) = 0_M$ and so $IK = K \subseteq N$ for every submodule K of M.

The converse of Corollary 2.15 is not true in general, since by Example 2.12, \mathbb{Z}_n as a \mathbb{Z} -module is a fully *I*-module for every n > 2, but \mathbb{Z}_{12} is not a strong comultiplication \mathbb{Z} -module, since $\operatorname{ann}_{\mathbb{Z}_{12}}(3\mathbb{Z}) = \operatorname{ann}_{\mathbb{Z}_{12}}(9\mathbb{Z}) = \langle \bar{4} \rangle$ whereas $3\mathbb{Z} \neq 9\mathbb{Z}$.

Remember that an element $r \in R$ is named prime to N if $rm \in N$ $(m \in M)$ implies that $m \in N$, that is $(N :_M r) = \{m \in M : rm \in N\} = N$. Suppose that S(N) is the set of all elements of R that are not prime to N. Then N is named primal if S(N) forms an ideal; this ideal is always a prime ideal, named the adjoint ideal P of N. In this case, we also say that N is a P-primal submodule of M. If the zero submodule of M is primal, then M will be called a coprimal module.

Proposition 2.16. Let N be a proper submodule of M. Then the following are equivalent.

(i) N is an r-submodule of M;

- (ii) $aM \cap N = aN$ for every $a \in R Z(M)$;
- (iii) $(N:_M a) = N$ for every $a \in R Z(M)$;
- (iv) aN = N for every $a \in R Z(M)$;
- (v) $N = \pi^{-1}(L)$, where S = R Z(M) and L is an $S^{-1}R$ -submodule of $S^{-1}M$;
- (vi) For an ideal I of R such that $I \cap (R Z(M)) \neq \emptyset$ and L is a submodule of M with $IL \subseteq N$, then $L \subseteq N$;
- (vii) Every $a \in R Z(M)$ is prime to N.

Proof. By [8, Proposition 4], (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) and by [8, Theorem 1], (i) \Leftrightarrow (v). Clearly, (iii) \Leftrightarrow (vii).

Corollary 2.17. Let N be a proper submodule of M and I an ideal of R with $I \cap (R - Z(M)) \neq \emptyset$. Then N is an r-submodule if and only if N is an I-submodule.

Proof. Assume that $a \in I \cap (R - \mathbb{Z}(M))$. Then $\operatorname{ann}_M(I) \subseteq \operatorname{ann}_M(a) = 0$ and so $\operatorname{ann}_M(I) = 0$. The proof follows from Proposition 2.16.

Corollary 2.18. Let M be an R-module and N a proper submodule of M. If $S(N) \subseteq Z(M)$, then N is an r-submodule.

Proof. By assumption, $R - Z(M) \subseteq R - S(N)$. Hence, each $a \in R - Z(M)$ is prime to N, i.e., $(N :_M a) = N$ for every $a \in R - Z(M)$. Then by Proposition 2.16, N is a r-submodule, as needed.

Theorem 2.19. Let M be a McCoy R-module and I a finitely generated ideal of R. Then the proper submodule N is an r-submodule of M if and only if N is an I-submodule of M.

Proof. Assume that $IL \subseteq N$ for some submodule L of M. If $\operatorname{ann}_M(I) \neq 0$, then we are done. Let I be a non-zero finitely generated ideal of R with $\operatorname{ann}_M(I) = 0$, then $I \notin Z(M)$, since M is MacCoy and so $I \cap (R - Z(M)) \neq \emptyset$. By Corollary 2.17, in this case, a submodule N of M is an r-submodule if and only if N is an I-submodule. \Box

Corollary 2.20. Let M be a finitely generated module over a Noetherian ring R. Then N is an r-submodule if and only if M is a fully I-module.

Proof. The proof is straightforward, since by [7, Theorem 82], every finitely generated module M over a Noetherian ring R is a MacCoy module. Hence the proof follows from Theorem 2.19.

Recall that a non-zero submodule N of M is named *second submodule* if for each $a \in R$ the homothety $N \xrightarrow{a} N$ is either surjective or zero. This implies that $\operatorname{ann}_{R}(N) = \mathfrak{p}$ is a prime ideal of R, and N is named

p-second submodule of M. Also, the R-module M is named *divisible* if for each $x \in M$ and for each non-zero divisor $r \in R$ there exists $y \in M$ such that x = ry. The dual notion of Z(M), the set of zero divisors of M, is denoted by W(M), defined as follows:

 $W(M) = \{r \in R \mid M \xrightarrow{r} M \text{ is not surjective}\} = \{r \in R \mid rM \neq M\}.$

Theorem 2.21. Let M be a R-module and $N \in \text{Spec}(M)$. If $\operatorname{ann}(N) = Z(M)$, then the following are equivalent.

- (i) N is a $\operatorname{ann}(N)$ -second submodule of M;
- (ii) N is a divisible $R/\operatorname{ann}(N)$ -module;
- (iii) rN = N for all $r \in R \operatorname{ann}(N)$;
- (iv) IN = N for all ideal $I \nsubseteq \operatorname{ann}(N)$;
- (v) $W(N) = \operatorname{ann}(N);$
- (vi) N is an r-submodule.

Proof. (i) \Leftrightarrow (ii) The proof is straightforward.

(i) \Leftrightarrow (iii) Clearly, $\mathfrak{p} = \operatorname{ann}(N)$ is a proper prime ideal of R. By assumption, for every $r \in R - \mathfrak{p}$, since $rN \neq 0$, then rN = N, because N is a \mathfrak{p} -second submodule of M. Conversely, if $r \in \mathfrak{p}$, then rN = 0. Otherwise, if $r \in R - \mathfrak{p}$, then by assumption, rN = N. Hence, N is a \mathfrak{p} -second submodule of M.

(iii) \Rightarrow (iv) \Rightarrow (v) are clear.

(v) \Rightarrow (i) Assume that, $\mathfrak{p} = \operatorname{ann}(N) = W(N)$. Then for every $r \in R$ either $r \in \mathfrak{p}$ or $r \in R - \mathfrak{p}$. Hence, either rN = 0 or rN = N, as needed. (iii) \Leftrightarrow (vi) The proof is clear by Proposition 2.16 (iv).

Proposition 2.22. Let M be an R-module and N a proper submodule of M. If N is an I-submodule for some ideal I of R, then N is an J-submodule for every ideal $J \supset I$ of R with $\operatorname{ann}_M(I) = \operatorname{ann}_M(J)$.

Proof. Assume that $J \supset I$ is an ideal of R such that $JK \subseteq N$ for some submodule K of M. If $\operatorname{ann}_M(J) \neq 0$, then we are done. Suppose that $\operatorname{ann}_M(J) = 0$. By assumption, since N is an I-submodule and $IK \subseteq JK \subseteq N$ with $\operatorname{ann}_M(I) = 0$ results that $K \subseteq N$, as needed. \Box

Proposition 2.23. Let M be a module on a PID R and N a proper submodule of M. Then the following assertions hold.

- (i) N is an r-submodule if and only if N is an I-submodule for ideal I = Ra of R.
- (ii) M is a fully pure module if and only if M is a fully I-module.

Proof. (i) Assume that N is an r-submodule, I = Ra is an arbitrary ideal of R for some $a \in R$ and $IK \subseteq N$ for some submodule K of M. If $a \in Z(M)$, then $\operatorname{ann}_M(a) = \operatorname{ann}_M(I) \neq 0$ and we are done.

Now, if $a \notin Z(M)$, then $\operatorname{ann}_M(a) = \operatorname{ann}_M(I) = 0$. By Proposition 2.16 (vi), N is an I-submodule, since $I \cap (R - Z(M)) \neq \emptyset$. Conversely, assume that $am \in N$ with $\operatorname{ann}_M(a) = 0$ for $a \in R$ and $m \in M$. Take, I = Ra and K = Rm. Again, since $\operatorname{ann}_M(a) = \operatorname{ann}_M(I) = 0$ and $IK = (Ra)(Rm) \subseteq N$, hence $K \subseteq N$ which results that $m \in N$, as needed.

(ii) Suppose N is an arbitrary submodule of M and I = Ra is an arbitrary ideal of R. By assumption, $IM \cap N = IN$ for each ideal I of R. In particular, $aM \cap N = aN$ for each $a \in R - Z(M)$. By Proposition 2.16 (ii), N is an r-submodule of M and by part (i), N is an I-submodule of M, as needed. The converse is clear by part (i) and Proposition 2.16 (ii).

Proposition 2.24. Suppose that N is an I-submodule of M for some ideal I of R, and S is a nonempty subset of R. Then $(N:_M S)$ is an I-submodule of M.

Proof. Assume that $IK \subseteq (N :_M S)$ for some submodule K of M and ideal I of R with $\operatorname{ann}_M(I) = 0_M$. Then $s(IK) = I(sK) \subseteq N$ for each $s \in S$. By assumption, since N is an I-submodule of M, hence $sK \subseteq N$ for each $s \in S$ and so $K \subseteq (N :_M S)$, as needed. \Box

Corollary 2.25. For every ideal I of R, $\operatorname{ann}_M(I)$ is an I-submodule.

Proof. If $\operatorname{ann}_M(I) \neq 0$, then we are down. Otherwise, take, S = I and $N = 0_M$ in Proposition 2.24.

Recall that a proper submodule P of M is named prime if $rm \in P$ for $r \in R$ and $m \in M$ conclude that $m \in P$ or $r \in (P :_R M)$. Let $\operatorname{Spec}_R(M)$ denote the collection of prime submodules of M. It is shown that a proper submodule P of M is prime if and only if for each ideal Iof R and submodule K of M with $IK \subseteq P$, then either $I \subseteq (P :_R M)$ or $K \subseteq P$.

Proposition 2.26. Let M be an R-module, P a proper submodule of M and I a non-zero ideal of R. If P is prime with $I \nsubseteq Z(M/P)$, then P is an I-submodule of M.

Proof. Assume that $P \in \operatorname{Spec}_R(M)$. Clearly, if for some ideal I of R, $I \nsubseteq (P:M)$, then P is an I-submodule of M. Let $IK \subseteq P$ for some ideal I of R and submodule K of M with $\operatorname{ann}_M(I) = 0$. Since P is a prime submodule, hence $Z(M/P) = (P:_R M)$. It results that $K \subseteq P$ since $I \nsubseteq Z(M/P)$, as needed. \Box

In the following definition, we generalize the definition of nonregular submodule to the nonregular submodule with respect to an ideal I of

R. Recall that a proper submodule *N* of an *R*-module *M* is called *nonregular*, if $aM \subseteq N$ implies that $\operatorname{ann}_M(a) \neq 0_M$, for each $a \in R$. If we consider *R* as an *R*-module, then this definition agrees with the concept of nonregular ideal, see ([10, Definition 2.17]).

Definition 2.27. A proper submodule N of an R-module M is nonregular with respect to an ideal I of R, if $I \subseteq (N : M)$ results that $\operatorname{ann}_M(I) \neq 0_M$.

Theorem 2.28. Let M be an R-module and I an ideal of R. Then the following statements are true.

- (i) Every I-submodule of M is nonregular with respect to I.
- (ii) Every prime nonregular submodule N of M with respect to I is an I-submodule.

Proof. (i) Assume that N is an *I*-submodule and $I \subseteq (N : M)$. Then $IM \subseteq N$. If $\operatorname{ann}_M(I) = 0_M$, then by assumption, N = M which is a contradiction. Hence $\operatorname{ann}_M(I) \neq 0_M$, as needed.

(ii) Suppose that $IK \subseteq N$ for some submodule K of M with $\operatorname{ann}_M(I) = 0_M$. It results that $I \nsubseteq (N : M)$, because otherwise by assumption $\operatorname{ann}_M(I) \neq 0_M$ which is a contradiction. Since N is prime, hence $K \subseteq N$, as needed. \Box

3. Special *I*-submodules

In this section, we present the concept of special *I*-submodules of an R-module M. Also, we extend the concept of special *r*-submodules to the fully special *I*-submodules. Remember that a submodule N of M is named a *special r*-submodule (briefly, *sr*-submodule) if $N \neq M$, for each $a \in R, m \in M$ with $am \in N$ and $\operatorname{ann}_R(m) = 0$, then $a \in (N :_R M)$, see [8, Definition 4].

Definition 3.1. Let M be an R-module and N a proper submodule of M.

- (i) N is a special I-submodule for an ideal I of R if for each submodule L of M, $IL \subseteq N$ with $\operatorname{ann}_R(L) = 0$ results that $I \subseteq (N :_R M)$.
- (ii) N is a fully special I-submodule, if N is a special submodule with respect to every proper ideal J of R. Equivalently, N is a fully special I-submodule of M, if $JL \subseteq N$ with $\operatorname{ann}_R(L) = 0$ results that $J \subseteq (N :_R M)$ for each submodule L of M and each ideal J of R.
- (iii) If each proper submodule N of M is a fully special I-submodule of M, then we say that M is a fully special I-module.

In particular, an ideal I of R is a special A-ideal of R, if I is a special A-submodule of R as an R-module, i.e., $AB \subseteq I$ for each ideal B of R with $\operatorname{ann}_R(B) = 0$ results that $A \subseteq I$.

Remark 3.2. Cleary, every fully special *I*-submodule is a *sr*-submodule (take, I = Ra and L = Rm). The converse is not true in general case.

Recall that an *R*-module *M* is named a *cancellation module*, if $IM \subseteq JM$ results that $I \subseteq J$ for all ideals *I* and *J* of *R*.

Theorem 3.3. Let M be a faithful multiplication R-module. If N is a special A-submodule of M, then (N : M) is a special A-ideal of R. The converse is true if M is finitely generated.

Proof. Assume that N is a special A-submodule of M such that $AB \subseteq (N:M)$ for some ideals A, B of R with $\operatorname{ann}_R(A) = 0$. Then, $ABM = B(AM) \subseteq N = (N:M)M$. By assumption, $\operatorname{ann}_R(A) = \operatorname{ann}_R(AM) = 0$ implies that $BM \subseteq N$. Hence $B \subseteq (N:M)$, as needed. Conversely, suppose that (N:M) is a special A-ideal of R and $AL \subseteq N$ such that A is an ideal of R and L a submodule of M with $\operatorname{ann}_R(L) = 0$. Then, $A(L:M)M \subseteq (N:M)M$, so $A(L:M) \subseteq (N:M)$ because every finitely generated faithful R-module M is a cancellation module and also, $\operatorname{ann}_R(L) = \operatorname{ann}_R((L:M)) = 0$. By assumption, $A \subseteq (N:M)$. □

Proposition 3.4. Let M be an R-module. If a proper submodule N of M is a fully special I-submodule, then N is an sr-submodule. The converse is true if M is torsion-free.

Proof. Assume that $a \in R$, $m \in M$ with $am \in N$ and $\operatorname{ann}_R(m) = 0$. Take, I = Ra, L = Rm. Hence $IL \subseteq N$ and $\operatorname{ann}_R(L) = 0$. By assumption, $I = Ra \subseteq (N :_R M)$ and so $a \in (N :_R M)$, as needed.

Conversely, assume that L is a submodule of M with $IL \subseteq N$ and ann_R(L) = 0 for each arbitrary ideal I of R. Since T(M) = 0, hence $L \cap (M - T(M)) = L \neq \emptyset$. By [8, Theorem 10 (i)], $I \subseteq (N :_R M)$, as needed.

Example 3.5. Consider $M = \mathbb{Z}_n$ as a \mathbb{Z} -module. Take, $N = \langle \bar{s} \rangle$ $(0 \leq s \leq n-1)$ with (n,s) = d > 1 and $I = k\mathbb{Z}$ an ideal of \mathbb{Z} . Let $L = \langle \bar{t} \rangle$ such that $IL = (k\mathbb{Z})(\langle \bar{t} \rangle) \subseteq \langle \bar{s} \rangle$. Then we have the following cases,

(i) If t = 0, then $I\langle \bar{0} \rangle \subseteq \langle \bar{s} \rangle$, with $\operatorname{ann}_{\mathbb{Z}}(\langle \bar{0} \rangle) = \mathbb{Z} \neq 0$.

(ii) If $t \neq 0$, then $s \mid kt$ with $\operatorname{ann}_{\mathbb{Z}}(\langle \bar{t} \rangle) = \frac{n}{(n,t)} \mathbb{Z} \neq 0$.

Hence N is a fully special I-submodule, so M is fully special I-module. In this case, all proper submodules of \mathbb{Z}_n are sr-submodules. If (t, n) =

1, then L = M, so $\operatorname{ann}_{\mathbb{Z}}(\mathbb{Z}_n) = n\mathbb{Z} \neq 0$ and we are done. Also, if (t,n) > 1, then $\operatorname{ann}_{\mathbb{Z}}(L) = \operatorname{ann}_{\mathbb{Z}}(\langle \overline{t} \rangle) = \frac{n}{(t,n)}\mathbb{Z} \neq 0$.

Acknowledgments

The author expresses sincere appreciation to the reviewer for their thorough review of the manuscript, insightful feedback, and valuable suggestions that contributed to enhancing the quality of this paper.

References

- M. Ahmadi and J. Moghaderi, *n-submodules*, Iran. J. Math. Sci. Inform., (1) 17 (2022), 177-190.
- H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwan. J. Math., (11) 4 (2007), 1189-1201.
- H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. (1) 8 (2009), 105-113.
- H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., (2008), 1-10.
- Z.El. Bast and P. F. Smith, multiplication module, Comm. Algebra., (4) 16 (1988), 755-779.
- C.Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with property (A) and their extensions, J. Algebra, **315** (2007), 612-628.
- I. Kaplansky, *Commutative rings*, University of Chicago Press, Chicago and London, 1974.
- S. Koç and Ü. Tekir, r-Submodules and sr-Submodules, Turk. J. Math., 42 (2018), 1863-1876.
- R. Mohamadian, r -Ideals in commutative rings, Turk. J. Math., 39 (2015), 733-749.
- R. Mohamadian, r -submodules and uz-modules, Alg. Struc. Appl. (1) 8 (2021), 61-73.
- S. Rajaee, S-small and S-essential submodules, J. Algebra Relat. Topics, (1) 10 (2022), 1-10.
- S. Rajaee, Essential submodules relative to a submodule, J. Algebra Relat. Topics, (2) 11 (2023), 59-71.
- Ü. Tekir, S. Koç and K. H. Oral, *n*-ideals of Commutative Rings, Filomat, (10) 31 (2017), 2933-2941.

Saeed Rajaee

Department of pure Mathematics, Faculty of Mathematical Sciences, University of Payame Noor, P.O.Box 19395-3697, Tehran, Iran.

Email: saeed_ rajaee@pnu.ac.ir