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Abstract. Urysohn integral equation is one of the most applicable topics
in both pure and applied mathematics. The main objective of this paper is
to solve the Urysohn type Fredholm integral equation. To do this, we ap-
proximate the solution of the problem by substituting a suitable truncated
series of the well known Legendre polynomials instead of the known func-
tion. After discretization of the problem on the given integral interval, by
using the proposed procedure the original integral equation is converted to
a linear algebraic system. Now, the solution of the resulting system yields
the unknown Legendre coefficients. Finally, two numerical examples are
given to show the effectiveness of the proposed method.
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1 Introduction

Nonlinear integral equations are encountered in various fields of science and
numerous application problems. So the exact solutions of these equations
play an important role in the proper understanding of qualitative features
of many phenomena and processes in various areas of natural sciences. For
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example, lots of equations of physics, chemistry, and biology contain func-
tions or parameters which are obtained from experiments and hence are
not strictly fixed [5]. Therefore, it is expedient to choose the structure of
these functions so that it would be easier to analyze and solve the equa-
tion. On the other hand, various kinds of nonlinear integral equations
usually can not be solved explicitly, so it is required to obtain approximate
solutions. Therefore, many different numerical methods have been offered
to obtain the solution of these kinds of mathematical problems. Some well
known numerical methods are reviewed as follows. In [1], the numerical
solution of an integral equation has been derived by using a combination of
spline-collocation method and the Legendre interpolation. The Legendre
polynomials are mostly used to solve several problems of integral equa-
tions. For example, the Legendre pesudo-spectral method is used to solve
the delay and the diffusion differential equations (see [1, 2]). In [3] the
Chebyshev polynomials are used to introduce an efficient modification of
homotopy perturbation method. The main purpose of the present study is
to consider the numerical solution of Urysohn integral equation based on
the Legendre approximation. Nonlinear integral equations with constant
integration limits can be represented in the form

F (t, x(t)) =
∫ b

a
K(t, s, x(s))ds, α ≤ t ≤ β,

where K(t, s, x(s)) is the kernel of the integral equation, x(s) is the un-
known function. Usually all functions in this equation are assumed to be
continuous and the case of α ≤ t ≤ β is considered. The above form does
not cover all possible forms of nonlinear integral equations with constant
integration limits. This kind of nonlinear integral equation with constant
limits of integration is called an integral equation of the Urysohn type. If
the above integral equation can be rewritten in the form

f(x) =
∫ b

a
K(t, s, x(s))ds,

then it is called an Urysohn equation of the first kind. Similarly, the equa-
tion

x(t) = f(t) +
∫ 1

0
K(t, s, x(s))ds, 0 ≤ t, s ≤ 1, (1)

is called an Urysohn equation of the second kind. The main objective of
this paper is to solve the Urysohn type Fredholm integral equation Eq.
(1). This method is based on replacement of the unknown function by the
truncated series of the well known Legendre expansion of functions. The
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proposed method converts the equation to a matrix equation, by means of
collocation points on the interval [−1, 1] which corresponds to system of
algebraic equations with Legendre coefficients. Thus, by solving the matrix
equation, Legendre coefficients are obtained.

The layout of the article is as follows. In Section 2, we give basic
definitions, assumptions and preliminaries of the Legendre polynomials.
In Section 3 we introduce our method. Numerical examples are given in
Section 4. Finally, concluding remarks are given in Section 5.

2 A brief review of the Legendre polynomials

Orthogonal polynomials are widely used in applications to a variety of
fields in mathematics, mathematical physics, engineering and computer
science. One of the most common set of this kind of polynomials are the
set of Legendre polynomials P0(t), P1(t), . . . , PN (t) which are orthogonal
with respect to the weight function w(t) = 1 on [−1, 1]. The Legendre
polynomials Pn(t) satisfy the Legendre differential equation

(1− t2)u′′(t)− 2tu′(t) + n(n + 1)u(t) = 0, −1 ≤ t ≤ 1, n ≥ 0,

and are given by the following relation

Pn(t) =
1
2n

[n
2
]∑

k=0

(−1)k(2n− 2k)!
(n− k)!((n− 2k)k)!

tn−2k, n = 0, 1, 2, . . . . (2)

Also, the recurrence formula associated with Legendre polynomials is given
by the relations

P0(t) = 1,

P1(t) =
1
2
(3t2 − 1),

(n + 1)Pn+1(t) = (2n + 1)tPn(t)− nPn−1(t), n ≥ 1. (3)

Legendre polynomials occur in the solution of Laplace equation of the po-
tential, ∆Φ(x) = 0 in a charge-free region of space, using the method of
separation of variables, where the boundary conditions have axial symme-
try. In fact, the solution is given by

Φ(r, θ) =
∞∑
l=0

[Alr
l + Blr

−(l+1)]Pl(cos θ),

where Al and Bl are to be determined according to the boundary condition
of each problem. They also appear when solving Schrodinger equation in
three dimensions for a central force.
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3 Description of the method

We consider the Fredholm Urysohn integral equation (1). The function x(t)
may be expanded by a infinite series of Legendre polynomials as follows

x(t) =
∞∑

n=0

cnPn(t), (4)

where cn = (x(t), Pn(t)). We consider a truncated series of Eq. (4), as

xN (t) =
N∑

n=0

cnPn(t) = CT P (t), (5)

where C and P are two vectors given by

C = [c0 c1 c2 . . . cN ], P (t) = [P0(t) P1(t) P1(t) . . . PN (t)]T . (6)

Then, by substituting the xn(t) into Eq. (1) we get

CT P (t) = f(t) +
∫ 1

0
K(t, s, CT P (t))ds, (7)

Now, to use the Legendre collocation method which is a matrix method
based on the Legendre collocation points depended by

tj = −1 +
2
N

, j = 0, 1, 2, . . . , N, (8)

we collocate Eq. (7) with the points (8) to obtain

CT P (tj) = f(tj) +
∫ 1

0
K(tj , s, CT P (s))ds. (9)

The integral terms in Eq. (9) can be found using composite trapezoidal
integration technique as∫ 1

0
K(tj , s, CT P (s))ds ≈ h

2

(
Ω(s0) + Ω(sm) + 2

m−1∑
k=1

Ω(sk)

)
, (10)

where Ω(s) = K(tj , s, CT P (s)) and h = 1
m , for an arbitrary integer m,

si = ih, i = 0, 1, . . . ,m. Therefore, Eq. (8) together with Eq. (9) gives an
(N +1)× (N +1) systems of linear or nonlinear algebraic equations, which
can be solved for ck, k = 0, 1, 2, . . . , N . Hence, the unknown function xN (t)
can be found.
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4 Numerical examples

In this section, two numerical examples are presented based on Legendre
approximate method to illustrate the effectiveness of the proposed method.
All of the results have been obtained by the MATLAB Software.

Example 1. Consider the following Fredholm Urysohn integral equation
(see [4])

x(t) = et+1 −
∫ 1

0
e(t−2s)x3(s)ds, (11)

where f(t) = et+1 and K(t, s, x(s)) = e(t−2s)x3(s). It is easy to verify that
the exact solution of the equation is x(t) = et. We apply the suggested
method with N = 4, and approximate the solution x(t) as follows

x4(t) =
4∑

i=0

ciPi(t) = CT P (t). (12)

By the procedure presented in the pervious section and using Eq. (9) we
have

4∑
i=0

ciPi(tj)−etj+1− h

2
(Ω(s0)+Ω(sm)+2

m−1∑
k=1

Ω(sk)) = 0, j = 0, 1, 2, 3, 4,

(13)
where

Ω(s0) = etj−2s0(
4∑

i=0

ciPi(s0))3,

Ω(sm) = (etj−2sm)(
4∑

i=0

ciPi(sm))3,

Ω(sk) = (etj−2sk)(
4∑

i=0

ciPi(sk))3,

in which sl+1 = sl + h, l = 0, 1, . . . ,m, s0 = 0 and h = 1
m . Eq. (14)

represents a system of (N +1) nonlinear algebraic equations with unknowns
ci. By using the Newton iterative method and initial guess ci = 0, we obtain

c0 = 0.7733, c1 = 4.2157, c2 = −3.7310, c3 = 1.8874, c4 = −0.4271.
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Table 1: Exact and approximate solution and error for Example 1.

Nodes Exact solution Approximate solution Error
0 1 1 8.8818e-015
1 1.1052 1.0953 -0.0098853
2 1.2214 1.2177 0.0037178
3 1.3499 1.3525 0.0026618
4 1.4918 1.4954 0.0035494
5 1.6487 1.6487 1.2212e-014
6 1.8221 1.8186 -0.0035499
7 2.0138 2.0111 -0.0026627
8 2.2255 2.2293 0.0037196
9 2.4596 2.4695 0.0098917
10 2.7183 2.7183 -1.6875e-014

Therefore, the approximation solution of this example is given by

x4(t) =
4∑

n=0

ciPi(t) = 0.7733P0(t) + 4.2157P1(t)− 3.7310P2(t)

+1.8874P3(t)− 0.4271P4(t).

Numerical results are given in Table 1. In this table, the exact and the
computed solutions together with the related absolute errors at points xi =
0.1i, i = 0, 1, . . . , 10 have been given. As seen the the computed solution is
in good agreement with the exact solution.

The behavior of the approximate solution using the Legendre approxi-
mate method with N = 4 and exact solution are presented in Fig. 1. It is
clear that the proposed method can be considered as an efficient method
to solve the linear integral equations.

Example 2. Consider the following integral equation (see [5])

x(t) = t3 − (6− 2e)et +
∫ 1

0
e(t−2s)x(s)ds, (14)

where f(t) = t3 − (6 − 2e)et and K(t, s, x(s)) = e(t−2s)x(s), such that the
exact solution of the equation is x(t) = t3. We apply the suggested method
with N = 4, and approximate the solution x(t) as follows

x4(t) =
4∑

i=0

ciPi(t) = CT P (t). (15)
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Figure 1: Approximate and exact solution for Example 1.

By the same procedure in the previous section and using Eq. (9) we have

4∑
i=0

ciPi(tj)− (t3j − (6− 2e)etj )− h

2
(Ω(s0) + Ω(sm) + 2

m−1∑
k=1

Ω(sk)) = 0,

j = 0, 1, 2, 3, 4, (16)

where

Ω(s0) = e(s0−tj)(
4∑

i=0

ciPi(s0))

Ω(sm) = e(sm−tj)(
4∑

i=0

ciPi(sm))

Ω(sk) = e(sk−tj)(
4∑

i=0

ciPi(sk))

in which sl+1 = sl + h, l = 0, 1, . . . m, s0 = 0 and h = 1
m . Eq. (14) gives

a system of (N + 1) nonlinear algebraic equations with unknowns ci. By
using the Newton iterative method and the initial guess ci = 0, we obtain

c0 = 0.05842, c1 = 1.2089, c2 = −0.7473, c3 = 0.8571, c4 = −0.1342.

Therefore, the approximation solution of this example by using

xN (t) =
N∑

n=0

ciPi(t),



Numerical solution of Urysohn integral equation 83

Table 2: Exact and approximate solution and error for Example 2.

Nodes Exact solution Approximate solution Error
0 0 -5.5511e-017 -5.5511e-017
1 0.001 -0.0020914 -0.0030914
2 0.008 0.0068374 -0.0011626
3 0.027 0.027832 0.00083229
4 0.064 0.06511 0.0011097
5 0.125 0.125 -1.6237e-015
6 0.216 0.21489 -0.0011097
7 0.343 0.34217 -0.00083229
8 0.512 0.51316 0.0011626
9 0.729 0.73209 0.0030914
10 1 1 1.7764e-015

is given by

x4(t) = 0.05842P0(t)+1.2089P1(t)−0.7473P2(t)+0.8571P3(t)−0.1342P4(t).

Numerical results are given in Table 2. In this table, the exact and the
computed solutions together with the related absolute errors at points xi =
0.1i, i = 0, 1, . . . , 10 have been given. As observed the method provides a
suitable solution to the problem. The behavior of the approximate solution
using the Legendre approximate method with N = 4 and exact solution
are presented in Fig. 2.

5 Conclusion

An approximate method for the solution of linear and nonlinear Fredholm
Urysohn integral equations in the most general form has been proposed
and investigated. A comparison of the exact and computed solutions re-
veals that the presented method is effective and convenient. The numerical
results show that the accuracy can be improved by increasing N .
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Figure 2: Approximate and exact solution for Example 2.
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