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Abstract. In this paper, a reliable approach is introduced to approxi-
mate periodic solutions of a system of coupled integrable dispersionless.
The system is firstly, transformed into an ordinary differential equation
by wave transformation. The solution of ODE is obtained by the homo-
topy perturbation method. To show the periodic behavior of the solution,
a modification based on the Laplace transforms and Pade approximation,
known as aftertreatment technique, is proposed. The angular frequencies
are compared with the exact frequency. Comparison of the approximated
results and exact one shows a good agreement.
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1 Introduction

Recently, considerable interest has been shown in the study of the dis-
persionless or quasiclassical limits of integrable equations and hierarchies.
The dispersionless hierarchies arise in the analysis of several problems in
applied mathematics and physics from the theory of quantum fields and
strings to the theory of conformal maps on the complex plane [5, 7, 13].
Various methods, in particular the inverse scattering transformation (IST)
have been used in the literature to study dispersionless equations [3, 12, 6].
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The generalized coupled dispersionless equations have been solved through
the IST method by Konno and kakuhata [2]. In this paper, a new approach
for approximations to the time–space periodic solutions of nonlinear evolu-
tion equations is introduced. The method is applied to a system of coupled
integrable dispersionless. In the study of equations describing wave phe-
nomena, one of the fundamental objects is the traveling wave solution [9]
that a solution possesses constant form moving with a fixed velocity and
changeless shapes during propagation. The wave transform ξ = x − ct
is used to convert a nonlinear PDE to an ODE. By this transformation
the PDE is converted to a nonlinear Duffing oscillator. There are various
methods to solve nonlinear ordinary differential equations, such as homo-
topy perturbation method [1, 4, 8, 10]. To show the periodic behavior of
the solution, that is the property of the Duffing oscillator, a new approach
based on the Laplace transforms and Pade approximation, known as after
treatment technique, is introduced.

2 The coupled integrable dispersionless equation

Consider a hierarchy of coupled integrable dispersionless equations

uxt − (vw)t = 0,
vxt − 2vux = 0,
wxt − 2wux = 0.

(1)

By substituting the wave transformation

u = u(ξ), v = v(ξ), w = w(ξ), ξ = x− ct, c 6= 0, (2)

Eq. (1) is converted to the following system
cuξξ − (vw)ξ = 0,
cvξξ + 2vuξ = 0,
cwξξ + 2wuξ = 0.

(3)

Integrating the first equation in Eq. (3), yields

uξ =
1
c
vw + k1, (4)

where k1 is the integration constant. Substituting Eq. (4) into the rest of
equations in (3), and letting k2 = 2k1

c leads to{
vξξ + 2

c2
v2w + k2v = 0,

wξξ + 2
c2

vw2 + k2w = 0.
(5)
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By multiplying w and v in first and second equations in (5), respectively,
the relation between w and v will be determined as follows

vwξξ − wvξξ = 0, (6)

or
(vwξ − wvξ)ξ = 0. (7)

This equation yields

(
w

v
)ξ = 0 ⇒ w = k3v, (8)

where k3 is an integration constant. Therefore, from the first equation of
(5), a second order ODE over v will be obtained

vξξ + k2v +
2k3

c2
v3 = 0, (9)

with initial conditions

v(0) = A, v′(0) = 0. (10)

Eq. (9) is the canonical form of Duffing oscillator. We now intend to solve
Eq. (9) via homotopy perturbation method. Then by Eqs. (8) and (4) the
solution of Eq. (3), in terms of ξ, can be obtained. The solution of Eq. (1)
will be obtained by substituting ξ = x− ct.

3 The solution procedure

3.1 Homotopy perturbation method

Using the HPM, the following homotopy for Eq. (9) can be constructed

v′′ + p(k2v +
2k3

c2
v3) = 0, (11)

where primes denotes derivatives with respect to ξ with initial conditions
v(0) = A and v(0) = 0. When the homotopy parameter p varies from 0 to
1, Eq. (11) varies from v′′ = 0 to original differential equation (9), or from
initial approximation to an exact solution of Eq. (9). The solution of Eq.
(11) can be expressed as a power series over p

v = v0 + v1p + v2p
2 + · · · . (12)
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Figure 1: (Left) Plot of v(ξ) by HPM. (Right) Comparison of modified
HPM and HPM by solid line and dash line respectively.

Substituting Eq. (12) into Eq. (11) and equating the coefficients of the
terms with identical powers, a series of linear equations of the following
form will be obtained

p0 : v′′
0 (ξ) = 0, v0(0) = A, v′

0(0) = 0,

p1 : v′′
1 (ξ) + k2v0(ξ) + 2k3

c2 × v3
0(ξ) = 0, v1(0) = 0, v′

1(0) = 0,

p2 : v′′
2 (ξ) + k2v1(ξ) + 2k3

c2 × 3v2
0(ξ)v1(ξ) = 0, v2(0) = 0, v′

2(0) = 0,
....

(13)

By solving equations in (13), v0(ξ), v1(ξ), v2(ξ), . . . can be determined and
the series solution (12) will be entirely determined. The m’th order ap-
proximation solution can be considered as follows

v(ξ) =
m∑

i=0

vi(ξ).

3.2 Improvement of the solution by an easy modification

The solution of this method for some values of parameters, say k1 = k3 =
0.5, k2 = 1, c = 1, and A = 1 is as follows

v(ξ) = 1− ξ2 + 0.33333ξ4 − 0.14444ξ6 + 0.06389ξ8 − 0.02728ξ10

+0.01173ξ12 − 0.00505ξ14 + 0.00217ξ16,
(14)
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and is shown in Fig. 1. It is clear that the solution (14) does not exhibit
the periodic behavior which is characteristic of oscillatory systems, and
this truncated series solution can be diverge rapidly, over a small region.
To overcome this lack and to improve the accuracy of the method, an
aftertreatment technique [11], can be applied as follows.

In the first step, applying the Laplace transformation to the series so-
lution (14), yields

L(v(ξ)) =
1
s
− 2

s3
+

8
s5
− 104

s7
+

2576
s9

− 99007.99990
s11

+
5.61747× 106

s13

− 4.4× 108

s15
+

4.54078× 1010

s17
.

(15)
For simplicity, let s = 1

p

L(v(ξ)) = p− 2p3 + 8p5 − 104p7 + 2576p9 − 99007.99990p11

+5.61747× 106p13 − 4.4× 108p15 + 4.54078× 1010p17.
(16)

By pade approximation of series (16), the following rational approximation
will be obtained

[
8
8
] =

p + 194.00004 p3 + 9164.00336p5 + 99856.05229p7

1 + 196.00004 p2 + 9548.00343p5 + 1.17488× 105p7 + 1.76400× 105p8
.

(17)
After recalling p = 1

s

[
8
8
] =

99856.05230s + 9164.00336s3 + 194.00004s5 + s7

1.76400× 105 + 1.17488× 105s2 + 9548.00343s4 + 196.00003s6 + s8
. (18)

By using the inverse Laplace transformation to (18), a periodic approxi-
mate solution will be obtained as

v(ξ) = 0.98208 cos(1.31845 t) + 0.01770 cos(3.99163 t)

+ 0.00022 cos(7.02844 t) + 4.70476× 10−7 cos(11.35472 t).
(19)

Fig. 1 shows the comparison of modified approximate solution obtained by
Laplace transformation technique and the solution obtained by HPM. It
obviously shows the periodic behavior of the solution and the improvement
of convergency.

4 Results and discussions

To show the effectiveness of the proposed method for nonlinear oscillator
(9), the comparison of the approximate frequencies for k1 = k3 = 0.5,
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Figure 2: (Left) The solution of (9) with respect to ξ (v(ξ)). (Right) The
solution of (1) (v(x, t)) for A=1

k2 = 1, and c = 1, for various amount of A, and the exact frequency are
shown in Table 1. The exact frequency of the oscillator (9) is

ωexact =
π

2
(
∫ A

0
[k2(A− v2)− k3

c2
(A4 − v4)]−

1
2 dv)−1.

Fig 2. shows the solution of (9) (v(ξ)), and the solution of (1) (v(x, t)).
The periodic solution of Eq. (1), can be obtained by Eqs. (4) and (8), and
transformation (2), as follows

v(ξ) = 0.98208 cos(1.31845 t) + 0.01770 cos(3.99163 t)

+ 0.00022 cos(7.02844 t) + 4.70476× 10−7 cos(11.35472 t),

u(ξ) = 0.5 v(ξ),

u(ξ) =
∫ ξ

0
v(y)w(y)dy +

ξ

2
,

with ξ = x− ct.

5 Conclusion

Modified homotopy perturbation method has been applied to three coupled
integrable dispersionless equations. It has been shown that the traditional
homotopy perturbation method does not show the periodic behavior of
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Table 1: Comparison of the approximate frequencies for k1 = k3 = 0.5,
k2 = 1, and c = 1.

A Approximate frequency ωexact

0.5 1.08917 1.08916
1 1.31845 1.31778
2 1.98315 1.97602
5 4.36349 4.35746
10 8.56621 8.53359

the solution. But by a modification, a periodic solution has been obtained.
The comparison of the approximate frequencies and exact one shows a good
agreement. Computations were performed by Maple 12.
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