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Abstract

For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent
stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required
to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-
Raphson method to reduce the cost and time required by the analysis. In this paper, a new approach is
suggested to generate the tangent stiffness matrix numerically from internal forces for the materially
nonlinear analysis of structures. The method is organized at the element level and, as is verified by
numerical experiments, affords good stability and preserves the convergence rate near that of the original
exact Newton-Raphson version. To implement the method, an appropriate configuration is first sought for
the stiffness matrix of the finite element, which satisfies the element equilibrium requirement; then, the
entries of this matrix template are generated from the generalized internal forces of the element by the
numerical method of finite differences. The method is applied to construct the stiffness matrix of the plane
frame element, which will be used in the analysis of some sample frame structures with materially
nonlinear behavior, under monotonic static loading.

Keywords: Finite element, Plane Frame, Nonlinear analysis, Numerical stiffness matrix.

1. Introduction

Nonlinear inelastic analysis becomes inevitable when engineering structures go beyond
the elastic range due to the large loads of an earthquake or blast. To maintain the simplicity of
structural design procedures, provisions such as FEMA-356 [1] and ATC-40 [2] recommend
nonlinear static procedures (NSP) rather than dynamic procedures. Nonlinear static analysis,
which considers structural behavior beyond the elastic domain, provides some useful
information that cannot be obtained by linear static or dynamic procedures [3].

The iterative Newton-Raphson method is a key tool for solving nonlinear systems of
equations in structural engineering. The method has the advantage of a quadratic asymptotic
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rate of convergence, but is generally considered to be an expensive and time-consuming
process [4] as the tangent stiffness matrices for all elements must be obtained through
computationally-expensive integration procedures. The process appears to be more costly as
the constitutive relations get more complexes.

Several different innovations have been developed to reduce the computational expense of
the Newton-Raphson method [5]. Some approaches are based on approximating the tangent
stiffness matrix, which may be more efficient than computing it exactly. Application of these
methods, though may cause a decrease in the convergence rate, will improve the iterative
algorithm, as a consequence of less computational effort.

Methods that incorporate estimates of the tangent stiffness matrix have not yet been used
for the inelastic analysis of frame structures. In all of the various approaches adopted for this
kind of analysis, from lumped and spread plasticity to inelastic fiber procedures, several
methods are proposed to update the exact tangent stiffness matrix at each iteration. Examples
of such methods are available in the literature [6-8].

An exact evaluation for the tangent stiffness matrix might not be necessary to solve a
nonlinear system of equations iteratively, though it ensures the solution at the most rapid
convergence rate [4]. In this paper, a new method is proposed to estimate the tangent stiffness
matrix of a finite element from internal forces, using the numerical method of finite
differences. It can be used for materially nonlinear analysis under static monotonic loading.
Such a method has already been applied to geometrically nonlinear problems [9]. However,
the procedure used here for materially nonlinear structures is different from what has been
previously proposed [9] for geometrically nonlinear analysis.

The proposed method is implemented in two steps. In the first step, an appropriate
configuration is found for the tangent stiffness matrix of the finite element that satisfies the
fundamental equilibrium equations at the element level. This characteristic is necessary to
ensure the convergence of the iterations [10]. Once the configuration for the tangent stiffness
matrix is obtained, its entries will be generated numerically at the second step. The aim of
this research is to implement the method for the plane frame element to be used in the
inelastic analysis of plane frame structures under monotonic static loads. Numerical
experiments are then presented to verify how the method might follow the exact Newton-
Raphson procedure.

2. Generalized stiffness formulation

In the following formulation, displacements are assumed to be small and the equilibrium
equations are established for the undeformed state of the finite element as a Lagrangian
coordinate system, so the geometrical nonlinearity may be ignored. The constitutive law is
supposed to be nonlinear, while the kinematic relations are assumed to be linear. Moreover,
the relations that follow are all established at the element level.

An inelastic structure under a monotonic static load follows a nonlinear equilibrium path,
rather than a linear one. The elements making up the structure also have this property. For
each element, the equilibrium equations may be written as

(1)DextDD fuf )(int

where fDext is the external nodal force vector exerted on the element, while fDint is the internal
nodal force vector of the element, which is a function of the element's nodal displacements
uD. This vector can be obtained from the nodal displacements of the structure when the
equilibrium equations are being solved at the structure level.
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There is no direct method to solve the nonlinear equilibrium equations in the structural
analysis; rather, incremental-iterative solution algorithms are mostly employed. These
algorithms deal with the nonlinear problem by iteratively solving a series of incremental
linear equations. For the displacement-based formulation, an increment of the nodal
displacement vector is obtained at each iteration. Summing the increments gives the total
nodal displacement up to the current iteration. Thus, the nonlinear equilibrium equations
(equation 1) can be converted to the following incremental linear equations for each iteration
i of the given step n:

(2a)
in,in,in,

DDD fuK  

(2b)
in,1-in,in,

DDD uuu 

(2c))( in,in,
int

in,
Dext

in,
DDD ufff 

Here, the residual force vector in,
Df is defined as the difference between the external

force in,
Dextf and the internal force in,

intDf , and in,
DK represents the stiffness matrix of the element,

which may change at each iteration according to the numerical solution method adopted. For
simplicity, the pointers i and n are omitted henceforth from the equations:

(3a)DDD fuK  

(3b))(intDext ufff DD 

From a mathematical point of view, the matrix KD may be interpreted as a representation
for the linear transformation  ee nn FU  : that maps vectors from the vector space of

element displacement increments enU onto the vector space of residual forces enF . Both
spaces have the same dimension, which is equal to the number of degrees of freedom (DOF)
ne of the element. The representation KD of the linear transformation  is obtained with
respect to the standard or canonical basis for the two spaces. The standard basis matrix

]1:[ eni  iD e , which is a columnar arrangement of ne linearly independent standard basic
vectors ei, is the identity matrix I.

The linear transformation  will have a different representation Kq with respect to another
basis, such as ]1:[ eni 

iqq  . Denoting by Kq the generalized stiffness matrix, the

stiffness relation appears in the following new representation with respect to the generalized
basis q:

(4a)qqq fuK  

(4b))(intqext ufff qq 

In the above relations, q represents the "generalized" indicator. The two representations (3)
and (4) of the stiffness relation are inter-related through the following transformations:
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(5)q
Τ
qq  DKK 

(6)Duu  -Τ
qq 

(7)Dff  Τ
qq 

where q
T denotes the transpose matrix for q. Recall that the matrix q is invertible, as its

columns constitute a set of linear independent vectors.
An appropriate selection of basic vectors may enable the matrix q to be decomposed into

two partitions:

(8)]|[]1:|1:[ qsqrresrqrqq n-nnsnnr  
sr

The submatrix qr is a columnar arrangement of the basic vectors for the null space of  ,
Ker, which comprises a basis corresponding to nr element rigid body motions. The other ns

= ne – nr basic vectors arrayed in the submatrix qs represent other strain states modeled by
the finite element. As each basic vector qr belongs to the null space Ker, its image under 
will be the zero vector in enF . Therefore, each matrix representation of the transformation
, such as KD, when multiplied by KKerqr , will give a zero vector in the residual force

space:

(9)0qrD

Substituting equation 8 into equation 5, we obtain the following block decomposition for
the generalized stiffness matrix:

(10)









qssqsr

qrsqrr

q 




The submatrices present in equation 10 may be written as below, by applying equation 9:

(11)00  .Τ
qrqr

Τ
qrqr

Τ
qrqrr  )( DD KK

(12)00  qsqs
Τ

qrqs
Τ
qrqs

Τ
qrqrs  .)()( DDD KKK

(13)00  .Τ
qsqr

Τ
qsqr

Τ
qsqsr  )( DD KK

(14)qs
Τ
qsqss  DK

These will give the following simplified representation for the generalized stiffness matrix
Kq with respect to the basis q from equation 8:
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(15)
ee

rs

srrr

nnqssnn

nnnn

q























0

00

The submatrix Kqss is of dimension ss nn  , and has a nonzero constant representation when
linear elastic behavior is only concerned [11]. For the nonlinear inelastic behavior, however,
the submatrix must be refreshed at each iteration. In this case, a singularity condition may
occur, or even a non-definite or negative definite matrix may result, depending on the kind of
nonlinearity, hardening or softening, that takes place.

Based on the partitioned basis q of equation 8, the partitioned stiffness relation is
represented as follows:

(16)
























qs

qr

qs

qr

qss f

f

u

u







0

00

3. Numerically generated tangent stiffness matrix

As discussed before, incremental-iterative solution algorithms are mainly used to solve the
nonlinear equilibrium system of equations in structural engineering. The most interested
solution procedure is the well known Newton-Raphson method, in which the tangent stiffness
matrix is recomputed at each iteration. This enables it to converge at a higher rate than
alternatives such as the secant or Newton-like procedures [5, 12].

The tangent stiffness matrix may be considered as the jacobian of the internal force
functions: a matrix consisting of the partial derivatives of the nodal internal force functions
with respect to the nodal displacements. If the nodal internal force vector ee nn FUf :Dint is a

function of ne displacement variables ei ni,u  1enU , the tangent stiffness matrix will be:

(17)
















 ee

j,D

Di,Dint

D nj,ni
u

f
11:

)(u


When it is difficult to find the tangent stiffness matrix by the well known finite element
formulation or analytical calculation of the jacobian, numerical differentiation algorithms,
such as the following forward finite difference method, may be adopted:

(18)










 ee

Di,Dintj,Dj,Di,Di,Dint

D nj,ni
fvu,jiuf

11:
)(-)( :


 u



where }1:{ ej,D njv   Dv is an arbitrary perturbation vector in the space of displacements
enU with respect to the basis D. The scalar number  is a small constant which may be

determined at each iteration according to some known values from the previous iteration. The
discretization error for the finite difference method will decrease as the perturbation constant
decreases. This will give a more precise assessment for the partial derivative, unless the
round-off errors disturb the accuracy of the solution. Therefore, the perturbation constant
might have an optimized value. The following numerical expression is used in this research
as an estimate for this value [9]:
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(19)1

11
.






in
D

in
D

m
u

u
,

,




where m is the machine precision, and . designates the L2-norm of the vector.

The numerical assessment of the stiffness matrix by equation 18 may suffer two
fundamental deficiencies. The first one is nonsymmetry of equation 18, and the second one is
its inability to consider a proper number of rigid body motions, RBMs. These deficiencies
may hurt the solution accuracy or lead to nonconvergence. To resolve the problem, the
stiffness matrix is modified after it is generated numerically, to give it the fundamental
features of symmetry and the proper number of RBMs [9].

The tangent stiffness matrix can be rebuilt for the generalized coordinates q, as discussed
before. The index D must then be substituted by q in Eqs. 17-19. The following numerical
estimate for the generalized tangent stiffness matrix is thus obtained:

(20)










 ee

qi,qintj,qj,qi,qi,qint

q nj,ni
fvu,jiuf

11:
)(-)( :


 u



where }1:{ ej,q njv   qv is an arbitrary perturbation vector in the space of displacements
enU with respect to the basis q.

4. Numerically generated stiffness matrix for the inelastic frame element

In this section, we describe the numerical generation of the tangent stiffness matrix for the
plane two-noded frame element with 6 degrees of freedom. The element has a length L,
uniform sections with area A and area moment of inertia I, and inelastic behavior in bending.
Nonlinear behavior for axial deformation (tension and compression) is neglected. The
nonlinear behavior is indicated by a nonlinear function )(κMM  for each section along the
element. The function illustrates how the moment for each section M changes with respect to
the section curvature  . It may be obtained by experiment or section analysis.

Figure 1. Plane frame element with materially nonlinear behavior

As mentioned before, a key problem in dealing with a numerical stiffness matrix is to
maintain a proper number of RBMs. The approach used by Lee and Park [9] for
geometrically nonlinear problems is to modify the numerically generated stiffness matrix so
that it has the proper rank. However, the present research suggests an inverse procedure for
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the materially nonlinear problems: first find an appropriate configuration for the stiffness
matrix with a proper rank, and then generate the stiffness matrix numerically for the finite
element.

Based on the discussion in Section 2, the basic vectors should be categorized into two
groups of RBMs and strain states, in order to find an appropriate configuration for the
stiffness matrix of the frame element with proper rank. RBMs are those basic deformations
that do not store strain energy. The two translational rigid body motions along and
perpendicular to the longitudinal axis and the rigid rotation are considered as the three RBMs
for the inelastic frame element. The vectors corresponding to these three RBMs constitute a
basis for the null space of the inelastic tangent stiffness transformation Ker(). It is worth
noting that the rigid rotation of the frame element stores strain energy in the case of
geometrically nonlinear behavior; thus, rigid rotation shall not be considered in the null space
of the geometrically nonlinear stiffness transformation [13].

The other three basic vectors selected for the space of element displacement increments
enU represent the strain states that store energy. These vectors, along with the three vectors

of RBMs, constitute the six linearly independent basic vectors spanning the space of element
displacement increments 6enU . A columnar arrangement of these six vectors will make up
the generalized basis matrix q:

(21)


































820100

4880210

002001

820100

4880210

002001

]|[

2

32

2

32

qsqrq

LL

LLL

L

LL

L-LL

L



Deformations corresponding to these basic displacement vectors are displayed in Figure 2.
Ref [11] presents a systematic approach for an appropriate selection of linearly independent
basic vectors.
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Figure 2. Rigid body motions and strain states for the frame element with materially
nonlinear behavior

The stiffness transformation will have the following representation with respect to the
basis introduced in equation 21:

(22)





































2221

1211

0000

0000

00000

000000

000000

000000

qq

qq

aqqssqsr

qrsqrr

q

kk

kk

k




This matrix has a maximum rank of 3, which is the correct maximum rank for the tangent
inelastic stiffness matrix. During the analysis procedure, as nonlinear materially-run
mechanisms cause the element stiffness to decrease, the rank of the matrix may drop.

In equation 22, aqk represents the generalized axial stiffness corresponding to the axial

strain state, and is equal to

(23)LAEk aq 

where E is the elastic modulus. The entries 1,2}:{ ji,k ijq in equation 22 comprise the

bending stiffness submatrix corresponding to the constant and linear strain states. During the
analysis procedure, the generalized axial stiffness aqk remains constant, since by initial

assumption, nonlinearity is overlooked for the axial behavior. However, the entries of the
bending stiffness submatrix may change during the nonlinear analysis. As is obvious from the
submatrix qss , there is no coupling between the axial and bending deformation components.

This means that no bending strain energy will be stored when the element is subjected to a
deformation corresponding to the axial strain state. Deformations pertaining to the bending
states also do not trigger axial strain states.

Using equation 20, the entries of the tangent bending stiffness submatrix in equation 22
can be numerically estimated while assuring the proper rank. To do this, it is necessary to
find the generalized internal force vector of the frame element. This vector can be obtained
from the element nodal internal force vector T}{ jyjxjiyixiintD MPPMPPf  through a
simple transformation:

(24)int
Τ
qintq Dff 

equation 24 may be expanded to give the following representation:
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(25)



























































































12.)(

2L.)(

2L.)(

02L)(

0

0

o

o

o

2
ji

ij

xixj

yiyjji

yjyi

xjxi

q2

q1

qa

u

u

LMM

MM

PP

PPMM

PP

PP

f

f

f

f

f

f



y

x

In the above equation, the generalized internal forces corresponding to the RBMs
oxuf ,

oyuf

and
of turn out to be zero, as no strain energy is stored in the RBMs. As indicated in equation

25, the zero-valued internal forces corresponding to the RBMs
oxuf ,

oyuf and
of pertain to

the force equilibrium equations along the two directions x and y, 0 xP and 0 yP , and

the moment equilibrium equation 0M , respectively, all established at the element level.

The generalized internal forces, aqf , 1qf and 2qf , correspond to the axial strain, constant and

linear curvature states, respectively. To establish a numerical estimate for the stiffness matrix
in equation 22 at iteration i of step n, 1qf and 2qf must be determined from the internal

moments of all sections along the frame element.
Nodal internal moments are given by the following relation:

(26)












L

0
))((])()([ dxxMxBxB

M

M

63

j

i

T

where B3 and B6 represent the third and sixth entries of the displacement-curvature matrix B,
respectively, and correspond to the rotational degrees of freedom for the frame element.
Based on the Euler-Bernoulli bending theory, the entries of the matrix B are considered as the
second derivatives of the entries for the matrix of shape functions N.

Substituting equation 26 into the two last entries of the vector in equation 25, 1qf and 2qf

are obtained as below:

(27)































L

0

L

0

)( dxM2L-x

dxM

f

f

q2

q1

As it is clear from equation 27, 1qf equals the algebraic sum of the area under the moment

distribution curve along the element. 2qf can also be interpreted as the first moment of section

moments for the frame element. equation 27 can also be obtained using the generalized
displacement-curvature matrix Bq. The entries of Bq are second derivatives of the entries in
the generalized shape function matrix Nq, which can be found from the basic vectors selected
in equation 21 [11]. The functions in Nq were already shown in Figure 2.

Using equation 20 and the known relations for 1qf and 2qf , the entries 1,2}:{ ji,k iq j for

the bending stiffness submatrix can be generated numerically. The method can be
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summarized as follows: to generate the entry jiqk , the basic strain state j is subjected to a

small displacement perturbation, causing a nonlinear change in the moment distribution along
the frame element. Based on this new moment distribution, the generalized internal forces are
calculated from equation 27. The entry jiqk can then be obtained from equation 20.

The generalized tangent stiffness matrix generated numerically according to equation 22
may suffer nonsymmetry, though it does turn out to be near-symmetrical, as will be shown by
numerical examples in the next section. The symmetry characteristic can be recovered by

substituting
2

2112 qq kk 
in place of the non-diagonal entries of the bending stiffness submatrix,

12qk and 21qk .

The stiffness matrix for the finite element can be obtained from the numerically generated
generalized stiffness matrix through the following transformation:

(28)q
Τ-

qD  qK

It is important to mention that the above transformation might not alter the rank for the
transformed matrix, i.e. )()( qD rankrank KK  ,  as q is invertible; therefore, the KD obtained

by equation 28 will have the proper rank.

5. Numerical examples

In this section, some numerical experiments are employed to evaluate the proposed
method and compare it with its alternatives. For the purpose of simplicity, the input data for
the element characteristics are set to unit values.

5.1. Cantilever beam with smooth nonlinear material behavior

A cantilever beam with point load P = 1.1 N at the free end is shown in Figure 3. The
beam has uniform cross-section with area A = 1.0 m2, area moment of inertia I = 1.0 m4,
length L = 1.0 m, Young's modulus E = 1.0 N/m2, and Poisson's ratio  = 0. The nonlinear
behavior of each section along the element is indicated by the explicit nonlinear function

)(1

)(
)(

xL

x
EIxM





 . For a close simulation of the ordinary behavior of steel or reinforced

concrete structures, the load P is exerted in such a way that the softening branch, not the
hardening one, of the nonlinear function )(MM  is activated. However, for theoretical
consideration, this assumption does not matter.

Figure 3. Cantilever beam with tip load

The cantilever beam is modeled by one frame element, and the Newton-Raphson method
is used for the analysis, while the tangent stiffness matrix at each iteration is obtained using
the following methods:
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1. The exact closed-form method (CFSM),
2. equation 18 (the frame element cannot satisfy equation 18, which is a self equilibrium

equation)
(NNSM), and
3. The proposed numerical method (NESM).

For all three methods, the integration is performed explicitly.
The results for the nonlinear analysis obtained by the three above methods are illustrated in
Figure 4. The perturbation vectors are selected randomly and considered the same for the two
numerical methods NNSM and NESM, so that the performance of the methods may be
compared appropriately. As is clear from Figure 4, the equilibrium path obtained by the
proposed method (NESM) follows the exact path achieved from the closed form relation for
the stiffness matrix very closely. However, the analysis obtained from a direct use of equation
18 without satisfying the element equilibrium requirement may not follow the equilibrium
path, though at the final point of the increment, it returns close to the exact curve. More
studies on this numerical experiment, not presented here, show that the self-equilibrated
stiffness matrix obtained by the proposed method is more robust than its non-equilibrated
counterpart. The equilibrium path obtained by the proposed method gets small shifts and
remains close to the exact equilibrium path when different perturbation vectors are used,
while for the non-equilibrated numerical method, large shifts occur, and sometimes the
analysis may diverge. The proposed method (NESM) converges in 8 steps, while NNSM
converges in 11 steps.

Figure 4. Equilibrium paths obtained by different stiffness matrix generation methods for
cantilever beam with smooth nonlinear material behavior

5.2. Cantilever beam with non-smooth nonlinear material behavior

In structural engineering, the nonlinear material behavior of steel or reinforced concrete is
mostly modeled by non-smooth multilinear (bilinear or three-linear) curves. In this example,
the nonlinear behavior for each section along the element shown in Figure 3 is supposed to be
indicated as a three-linear function, shown in Figure 5. The beam characteristics are the same
as the previous example. The multilinear function is a well-behaved approximation for the
nonlinear sectional behavior function introduced in the previous example.
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Figure 5. Three-linear simplified model for nonlinear material behavior of the
cantilever beam sections

The cantilever beam shown in Figure 3 with nonlinear sectional behavior depicted in
Figure 5 is analyzed by the three methods CFSM, NESM and NNSM. A two-point quadrature
rule is employed for the integration. As shown in Figure 6, the results obtained by the three
methods coincide very closely. Therefore, it may be concluded that the numerical method for
tangent stiffness matrix generation performs well when it is applied to multi-linear behavior
functions.

Figure 6. Equilibrium paths obtained by different stiffness matrix generation
methods for cantilever beam with three-linear material behavior

5.3. Portal frame with smooth nonlinear material behavior

Consider a portal frame with three elements under lateral loading P = 4.0 N, as shown in
Figure 7. All frame elements have the same uniform sections with area A = 1.0 m2, area
moment of inertia I  = 1.0 m4, and length L = 1.0 m. The nonlinear behavior of the sections is

indicated by the nonlinear explicit function ))(()( xLsin
L

EI
xM  . The function has two

smooth softening branches, symmetric with respect to the origin. Geometrical nonlinearity is
neglected in the procedure. Each element is modeled by one frame element. The Newton-
Raphson method is applied to solve the nonlinear equations of equilibrium, while the tangent
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stiffness matrices for the elements at each iteration are calculated by the two methods CFSM
and NESM.

Figure 7. Portal frame with three nonlinear frame elements under lateral loading

The results obtained by the two methods are depicted as lateral load-lateral displacement
curves in Figure 8. As the functions appearing in the CFSM method may not be explicitly
integrable, a two-point Gauss quadrature rule is employed for integration. However, the
tangent stiffness matrices in the NESM method can be explicitly integrated. The discrepancy
of results for the two methods turns out to be mostly a consequence of the difference in
integration approaches, since the results will approach each other when a two-point Gauss
quadrature rule is employed for both methods. It may therefore be concluded that the results
obtained by the NESM method and explicit integrating rule are more accurate than the results
from CFSM method with approximate integration.

Figure 8. Equilibrium paths obtained by different methods of stiffness matrix
generation for portal frame with smooth nonlinear material behavior

6. Conclusion

In this research, a method was proposed to numerically generate the tangent stiffness
matrix of the frame element for the analysis of frame structures with nonlinear material
behavior. In the first step, a general configuration is recognized to represent the tangent
stiffness matrix that maintains the element self-equilibrium requirement by including a proper
number of rigid body motion states. The fundamental attribute of the present approach is the
decomposition of the basis for the vector space of displacements into the RBMs and stain
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states. The proposed procedure deals with the tangent stiffness matrix in a generalized
coordinate system. In the second step, the entries of the element generalized stiffness matrix
are numerically generated for each iteration, using the forward finite difference
approximation.
Numerical verification demonstrates some features of the proposed procedure:

1. The proposed procedure is sufficiently accurate. It generates the equilibrium path
adequately close to the exact curve. This feature may be interpreted as a consequence of
two main points. The first is that the generated tangent stiffness matrix retains the self-
equilibrium feature. The second point is the low number of nonzero entries of the
generalized stiffness matrix to be numerically evaluated. While in the proposed procedure,
only 4 entries must be evaluated to give the stiffness matrix, a 16-entry numerical
generation is needed to construct the tangent stiffness matrix for the frame element in
other procedures [9]. Moreover, in problems where explicit integration may not be dealt
with and an approximate integrating rule has to be employed, numerical generation of the
stiffness matrix with exact explicit integration may improve the results; however, this
claim requires more investigation and research.

2. The proposed procedure is robust. No considerable shift occurs in the results when the
perturbation vector changes. This feature may also be regarded as a consequence of the
self-equilibrium characteristic of the frame element, provided in the proposed procedure.
Further numerical investigation, not presented in this paper, shows that the numerical
procedure that does not satisfy the self-equilibrium requirement suffers a slow
convergence rate, low accuracy, and nonconvergence in some cases.

3. The proposed procedure has no limit in its application at the element level. While the
numerical method generating the ordinary element stiffness matrix may encounter
difficulties due to zero boundary conditions, the proposed method can skip the problem as
the stiffness matrix is configured for the generalized coordinates. The problem pertains to
the inevitable zero perturbation scalar corresponding to the zero DOF, appearing in the
denominator when the finite difference rule is employed. The zero value is substituted by a
small number to settle the problem. However, in the proposed method, zero boundary
conditions may seldom produce zero-valued coefficients for the strain state basic vectors
in practice. Thus, the perturbation scalars might not be zero and the procedure can follow
its ordinary regulation.

The present procedure is proposed for the numerical generation of the element stiffness
matrix for finite elements with nonlinear constitutive laws, and was implemented for the
frame element. The procedure may also be extended to other complex finite elements,
including plates and shells. The procedure is fundamentally applicable for structural problems
where an exact evaluation for the tangent stiffness matrix is costly or unavailable due to the
complex constitutive models.
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