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Abstract 

In this paper, a crack localization method for Euler-Bernoulli beams via an efficient static data based 
indicator is proposed. The crack in beams is simulated here using a triangular variation in the stiffness. 
Static responses of a beam are obtained by the finite element modeling. In order to reduce the 
computational cost of damage detection method, the beam deflection is fitted through a polynomial 
function using a limited number of nodal displacements. A damage indicator based on static responses 
obtained for healthy and damaged structure is proposed to identify the damage. Three test examples 
including a simply supported beam, an overhanging beam and an indeterminate beam are considered. The 
influence of many parameters may affect the efficiency of the method such as the number of elements, the 
value, type and location of applied load as well as the noise effect is investigated. Numerical results show 
that, the locations of single and multiple damage cases having different characteristics can be well 
determined by the method proposed. 
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1. Introduction 
 

Many structural systems may experience some local damage during their lifetime. If the 
local damage is not identified timely, it may lead to a terrible outcome. Therefore, structural 
damage detection is of a great importance, because early detection and repair of damage in a 
structure can increase its life and prevent from an overall failure. Structural damage detection 
techniques address the problem of how to detect damage that occurred in a structure by using 
the changes observed in dynamic and static characteristics of the structure. During the last 
years, much progress has been made to introduce a proper damage detection method for beam 
structures. For damage detection, the responses of a structure including static and dynamic 
responses perform a vital role. Several studies related to using dynamic responses such as the 
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natural frequencies and mode shapes of a structure can be found in the literature [1-13]. Also, 
damage detection methods based on employing static data have attracted much attention. 
Since static methods only depend on the stiffness matrix, therefore relations are easier with 
less complexity. In addition, static techniques have more accurate data, inexpensive tools of 
measurement and also the speed of access to the right data in comparison with dynamic ones. 
Banan et al. [14] proposed an algorithm for estimating member constitutive properties of the 
finite element model from measured displacements under a known static loading. The 
algorithm was based on the concept of minimizing an index of discrepancy between the 
model and measurements using the constrained least-square minimization. A method for 
estimating parameters in the linearly elastic structures using the measurements of strain 
energy was introduced by Sanayei and Saletnik [15]. A structural damage identification 
algorithm using static test data and changes in natural frequencies has been presented by 
Wang et al. [16]. They used an efficient and simple damage identification technique having 
two main stages, which employed the structural static deformation and the first a few natural 
frequencies. The results revealed the efficiency of the proposed algorithm for the damage 
identification. Bakhtiari-Nejad et al. [17] presented a method using static test data. They used 
a method based on stored strain energy in elements in order to select the loading location. 
Also, they tested the method experimentally using a frame in order to determine damage at 
element level without having an accurate model for healthy structure. A two-stage damage 
detection method based on a grey system theory for damage localization and an optimization 
technique for damage quantification using the measured static displacement of a cantilever 
beam was proposed by Chen et al. [18]. They showed that the grey relation analysis based 
method can localize the slight to moderate damage and the optimization can identify the 
damage magnitude with a high accuracy. Crack detection in elastic beams by static 
measurement has been made by Caddemi and Morassi [19]. The method can be used to 
identify single crack in a beam by the knowledge of the damage-induced variations in the 
static deflection of the beam. They showed that numerical results are in a good agreement 
with the proposed theory. A parametric study using static response based displacement 
curvature for damage detection of beam structures has been made by Abdo [20]. The results 
exhibited that changes in displacement curvature can be used as a good damage indicator 
even for a small amount of damage. Seyedpoor and Yazdanpanah [21] have been proposed an 
efficient indicator named SSEBI for structural damage localization using the change of strain 
energy based on static noisy data". The acquired results clearly showed that the proposed 
indicator can precisely locate the damaged elements. 

The main purpose of this study is to assess the efficiency of a static data based damage 
detection method for determining the location of damage in beams. For this, an efficient 
damage indicator is introduced to estimate the damage locations in beam structures. The 
influence of many parameters affecting the efficiency of the method is investigated. 
Numerical results demonstrate that the proposed index can well determined the locations of 
single and multiple damage cases having different characteristics. 

 
2. Damage detection techniques 
 
There are various damage detection techniques that can be utilized to identify the damage 

in a beam structure. In this section, three more efficient methods including curvature method, 
flexibility method and strain energy method are described briefly. 
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2.1. Curvature method 
 

In solid mechanics, the curvature 
ρ
1

 ( ρ is the radius of curvature) and deflection y can be 

related as [22,23]: 
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where M is the bending moment, E is the modulus of elasticity and I is the moment of 

inertia of the cross section. Neglecting the second order of slope, the curvature can be 
approximated by equation (2): 
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Then, the relationship between curvature, bending moment and stiffness can be considered 

as follows: 
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Equation (3) shows that the curvature is a function of stiffness. Any change in the stiffness 

due to any damage at a section may be evidenced by a change in curvature at that location. 
 
2.2. Flexibility method  
 
The flexibility method [3] is a vibration based damage identification method. Using 

information of a modal analysis, the flexibility change of a structure before and after damage 
can be considered as an index for identifying structural damage. The modal flexibility matrix 
of a structure with nd total degree of freedoms can be given by [3]  
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where [F] is the modal flexibility matrix; ][ϕ  contains the mass normalized mode shape 

vectors; and ]1[ 2ω  is a diagonal matrix containing the reciprocal of the square of circular 
frequencies in ascending order. Also, jω and jϕ are jth circular frequency and mode shape of 
the structure, respectively. Theoretically, damage reduces the stiffness and then increases the 
flexibility of the structure. Increase in the structural flexibility can therefore serve as a good 
indicator for structural damage detection. 

 
 
 



Omid Yazdanpanah , Seyed Mohammad Seyedpoor /  Comp. Meth. Civil Eng.  1 (2013) 43-63 

46 

2.3. Strain energy method 
 
The strain energy method [9] is another damage identification technique that has been 

widely used. Assuming that a 2D-beam is divided in n elements, the strain energy stored by 
an element due to flexural deformation can be expressed as [9]: 
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where xj and xj+ 1 delimit the element j. 
Hypothetically, the damage occurrence leads to increasing the strain energy and therefore 

can be used as an efficient indicator for damage detection. 
 
3. Crack modeling 
 
As shown in Figure 1, a transverse surface crack is located at xcr from the left end of a 

beam. A fully open transverse surface crack model, as illuminated by Sinha et al. [24], is 
adopted in this paper. The effect of the crack on the mass is small and can be neglected. The 
crack only leads to local stiffness reduction in a specified length adjacent to the crack. It is 
assumed that the reduction of stiffness due to the crack is inside one element. Considering 
one cracked element as shown in Figure 2, the flexural rigidity EI of the cracked element 
varies linearly from the cracked position towards both sides in an effective length lc. The 
stiffness matrix of the damaged element can be represented as [24]: 

 
e e e
c u cK K K= − ∆                                                                                                           (6) 

 

 
 

Figure 1.  A simply supported beam having a crack located at xcr from the left end 
 

 
 

Figure 2. Variation of EI due to the crack in an element with le 
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where e
uK  represents the element stiffness matrix of the intact element; e

cK∆  is the 
stiffness reduction on the intact elemental stiffness matrix due to the crack. According to 
Euler–Bernoulli beam element, the elemental stiffness matrix of the intact beam is expressed 
as [24]: 
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By using the linear variation of EI as proposed by Sinha et al. [24], the reduction on the 

elemental stiffness matrix can be obtained as: 
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where the stiffness factors are given by 
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where xc is the crack location in the local coordinate, le is the length of the element and lc is 
the effective length of the stiffness reduction. The value of lc is assumed to be 1.5 times the 
beam height as illustrated by Sinha et al. [24]. Also, E is the Young’s modulus, 3 12oI wh=  

and ( )3 12c cI w h h= −  are the moment of inertia of the intact and cracked cross sections, 
respectively, w and h are the width and height of the intact beam and ch  is the crack depth. 
For cases of more than one cracked elements, the same procedure can be followed. The 
global stiffness matrix Kc is obtained by assembling the element stiffness matrices including 
those of cracked elements. 
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4. The proposed damage detection method 
 
In this paper, damage detection of a prismatic beam with a specified length is studied. 

First, the beam is divided into a number of finite elements. Then, nodal displacements of the 
beam in measurement points are evaluated using the finite element method. Deformation 
equation (y) can be obtained by fitting a polynomial curve via specified nodal displacements. 
By having the deformation equation, the equation of the slope ( xy dd=θ ) can be achieved. 
The displacement curvature equation of healthy beam can now be determined with 
differentiating the slope equation. This process can also be repeated for damaged beam. It 
should be noted in this paper, it is assumed that the damage decreases the stiffness and 
therefore is simulated by a reduction in the moment of inertia (I) at the location of damage. It 
is also supposed that the damage is occurred in the center of an element. Finally, using the 
static responses (nodal displacements, slope and displacement curvature) obtained for two 
above states a new index is introduced that can be utilized to identify the damage. 

The step by step summary of the damage detection method can be described as follows: 
1) Divide the beam subjected to an arbitrary concentrated load into n elements (n+1 nodes) 

as shown in Figure 3, (xp is the location of concentrated load from the left side of the beam). 

 
 

Figure 3. (a) The geometry of simply supported intact beam      (b) Cross-section of the beam 
 
2) Analyze the beam using the finite element method for determining the displacements of 

measurement points shown in Figure 4. 
 

 
 

Figure 4. Displacements of the simply supported intact beam under a concentrated load 
 
3) Consider the nodal coordinates and displacements obtained as follows: 
 
[ ] ( )h 1 h1 2 h2 3 h3 i hi n+1 h n+1, = ( , ),( , ),( , ), ... ,( , ), ... ,( , )x y x y x y x y x y x y⎡ ⎤
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Now the goal is to obtain the best curve which passes through the determined points. A 

polynomial curve that passes through above points can be defined as follows: 
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where ( )1 2 3 m+1a ,a ,a ,...,a are the polynomial coefficients and m is the polynomial degree. 
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4) Determine the slope (θ) equation with differentiating from equation (10). 
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5) Determine the displacement curvature of healthy beam with differentiating from 
equation (11). 
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The curvature of the beam can now be evaluated at any arbitrary point. 
6) Induced a hypothetical damage in an arbitrary element as shown in Figure 1, and 

analyze the beam for determining the nodal displacements in measurement points. 
7) Consider the nodal coordinates and displacements of damaged beam as follows: 
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The displacement curve of damaged beam can be fitted as 
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8) Determine the slope (θ) equation with differentiating from equation (13). 
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9) Determine the displacement curvature of damaged beam with differentiating from 

equation (14). 
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The curvature of the damaged beam can now be evaluated at any arbitrary point. 
 
10) Use the proposed damage index bellow for damage localization.  
 

( ) ( )2
d h

2
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(16)
    

                                        
In order to improve the SRBI (static response based index), the index can be scaled 

through equation (17) as: 
 

( )( ) ( )=max 0, -mean /stdnSRBI SRBI SRBI SRBI⎡ ⎤⎣ ⎦                                                          
(17)
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where mean (SRBI) and std (SRBI) represent the mean and standard deviation of SRBI, 
respectively. Also, the mean of equation (17) for the mn load conditions can now be selected 
as an efficient damage indicator as: 

1=

mn

c

nSRBI
mnSRBI

mn
=
∑

                                                                                                         
(18) 

 
5. Numerical examples 
 
In order to assess the efficiency of the proposed index for damage detection, three test 

examples including a simply supported beam, an overhanging beam and an indeterminate 
beam are considered. Various parameters that may affect the performance of the method are 
studied.  

 
5.1. Example 1: a simply supported beam 
 
A simply supported beam with span L=1 (m) shown in Figure 5 is selected as the first 

example. The beam has a square cross-section with dimensions of 0.2×0.2 m. Modulus of 
elasticity is 2 1 0E G P a= . As shown in Figure 6, for assessment of the method, seventeen 
different damage scenarios are considered. The first twelfth scenarios (cases 1-12), consist of 
a single damage under concentrated load. For damage scenarios 1-12, three different load 
cases as given in Tables 1-3 are considered. The Table 1, Table 2 and Table 3 are used to 
scenarios 1-8, scenarios 9-10 and scenarios 11-12, respectively. 

 The thirteenth to fifteenth scenarios (cases 13-15), include multiple damage cases with 
different intensities. The sixteenth and seventeenth scenarios (case 16 and 17) are considered 
for single and multiple damages under uniformly distributed load, respectively. The seventh 
and eighth scenarios (case 7 and 8) are introduced to consider the measurement noise effect.  

One of the important parameter for accurately identifying damage is the number of 
measurement points for static response data. In order to consider this effect, two different 
finite element meshes are used for the beam in scenarios 1 to 10. The first mesh consists of 
10 elements for the beam (damage scenarios 1-8, the length of each element is equal 0.1 L). 
The second mesh models the beam with 20 elements (damage scenarios 9-10, the length of 
each element is equal 0.05 L). The influence of value of load is also considered here. The 
eleventh and twelfth cases (scenario 11 and 12) is similar to the second and third cases, but, 
the load value is two times. In fact, this case is considered for investigating the effect of load 
value on damage detection. Practically, the measurement noise can not be avoided. Hence, in 
order to consider the noise effect, the nodal displacements of the damaged structure are 
randomly polluted by a uniformly distributed number as: 

 
])1 2(1[dd

n noiseranddisdis ×−+×=                                                 (19) 
 

where ddis stands for the nodal displacements of the damaged structure, d
ndis  represents the 

noisy nodal displacements and rand is a random number uniformly generating between 0 and 
1. Also, noise is the percentage of noise considered. In this example, 3% noise is assumed. 
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(a)          (b)  

 
Figure 5. (a)Geometry of the simply supported beam; (b) Cross-section of the beam 

 
Table 1. Static load cases applied to the simply supported beam (scenarios 1-8) 

 
Table 2. Static load cases applied to the simply supported beam (scenarios 9-10) 

 
Table 3. Static load cases applied to the simply supported beam (scenarios 11-12) 

 

 
  

Case-1   Reduction in h3=20%                            Case-2    Reduction in h4=25% 

 
Case-3   Reduction in h5=15%                           Case-4   Reduction in h6=10% 

 
Case-5   Reduction in h7=30%                         Case-6   Reduction in h8=10% 

Case 3 (KN) Case 2 (KN) Case 1 (KN) Node 
Py Py Py  
0 0 -10 3 
0 -10 0 6 

-10 0 0 9 

Case 3 (KN) Case 2 (KN) Case 1 (KN) 
Node 

Py Py Py  
0 0 -10 5 
0 -10 0 11 

-10 0 0 17 

Case 3 (KN) Case 2 (KN) Case 1 (KN) 
Node 

Py Py Py  
0 0 -20 3 
0 -20 0 6 

-20 0 0 9 
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Case-7   Reduction in h4=25% – noise=3%          Case-8   Reduction in h5=15% – noise=3% 

 
Case-9   Reduction in h8=25%                          Case-10   Reduction in h10=15% 

 
Case-11   Reduction in h4=25%                      Case-12    Reduction in h5=15% 

 
Case-13   Reduction in h3 & h8=20%            Case-14   Reduction in h4 & h7=30% 

 
Case-15   Reduction in h5 & h6=10%           Case-16   Reduction in h5=20% 

 
Case-17   Reduction in h3 & h8=25% 

 
Figure 6.  Seventeen different damage scenarios for the simply supported beam 

 
For evaluating the index given by Eq. (18), the deflection equation of the beam before and 

after damage is needed to be determined. The curve fitting toolbox of MATLAB [25] is 
employed here for this purpose. For example, the deformed shape and corresponding 
equations obtained for the intact beam and damaged beam of case 14 are shown in Figures 7-
8, respectively. 

Damage identification charts of simply supported beam for cases 1-17 are shown in Figure 
9. As shown in the figure, the value of mnSRBI is further in vicinity of some elements that 
this indicates there is damage in these elements. The mnSRBI is shown for damage scenarios 
2 and 3 (with 10 elements) and 9 and 10 (with 20 elements) in Figures 9 (b)-(c) and 9 (i)-(j), 
respectively. The results show that the location of damage is identical in both cases. This 
means that the number of measurements is not very important, while the most important 
factor for determining the damage location is precise data and the accuracy of measurement. 
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However, for avoiding the false damage detection, it is suggested that the number of elements 
are not very low. 

 
 

 
Figure 7. Deformed shape and deflection equation of the simply supported intact beam for case 14 

 
Figure 8. Deformed shape and deflection equation of the simply supported damaged beam for case 14 
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(a)  Case-1 (damaged element=3, reduction in h=20%)      (b) Case-2 (damaged element=4, 

reduction in h=25%) 

 
(c) Case-3 (damaged element=5, reduction in h=15%)             (d) Case-4 (damaged element=6, 

reduction in h=10%) 

 
(e) Case-5 (damaged element=7, reduction in h=30%)   (f) Case-6 (damaged element=8, reduction 

in h=10%) 

 
             

(g) Case-7 (damaged element=4, reduction in h=25%, noise=3%)  (h) Case-8 (damaged element=5,     
                                                                                                            reduction in h=15%, noise=3%) 
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(i)  Case-9 (damaged element=8, reduction in h=25%)       (j) Case-10 (damaged element=10,  

                                                                                  reduction in h=15%) 

 
(k)  Case-11 (damaged element=4, reduction in h=25%)         (l) Case-12 (damaged element=5,  

                                                                                          reduction in h=15%) 

 
(m) Case-13 (damaged elements=3 & 8, reduction in h=20%)      (n) Case-14 (damaged elements=4  
                                                                                                                & 7, reduction in h=30%) 

 
(o) Case-15   (damaged elements=5 & 6, reduction in h=10%)   (p) Case-16 (damaged element=5,  
                                                                                                              reduction in h=20%) 
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(q) Case-17 (damaged elements=3 & 8, reduction in h=25%) 

 
Figure 9. Damage identification of simply supported beam for cases 1-17 

 
The values of mnSRBI for damage scenarios 13-15 (multiple damages) are shown in 

Figures 9 (m)-(o), respectively. It is reveal that the index can also locate the multiple damage 
cases properly.  

The values of mnSRBI for damage scenarios 16-17 are shown in Figures 9 (p) and (q), 
respectively. The results show that the damage index can locate the single and multiple 
damages under uniformly distributed load correctly. 

For examining the effect of load value on damage detection method, the results of scenario 
2 and scenario 3 (use Table 1.) with scenario11 and scenario 12 (use Table 3.), are compared, 
respectively. The identification charts are shown in Figures 9 (b)-(c) and 9 (k)-(l), 
respectively. As can be observed, the values of SRBI are identical in both cases. In fact, the 
static responses for all measurements (nodes) in scenarios 11 and 12 are two times those 
obtained from scenario 2 and 3. This leads to double the values of numerator and 
denominator of SRBI. It can be concluded that the use of SRBI as a method for determining 
the damage sites does not depend on load value. However, the magnitude of load plays an 
important role in practical work. In fact, the measurement devices may not be able to measure 
the static responses, when the applied loads are very small. 

Figures 9 (g) and (h) show damage charts for the damage scenarios 7 and 8 considering 
3% noise, respectively. When comparing them with those shown in Figures 9 (b) and (c) for 
scenarios 2 and 3 (states without noise), it can be indicated that there is a good compatibility 
between these values. In other words, the measured noise has a negligible effect on SRBI. It 
should be noted that for considering the stochastic nature of damage detection method with 
respect to randomly generated noise, a Mont Carlo simulation is required to be performed 
[15]. However, as the technique proposed here dose not present a quantitative criterion to 
determine the correct damage detection needed for Mont Carlo simulations, so the mean of 
some different runs has been considered instead of a Mont Carlo simulation.  

All of the results prove that the use of the static responses (nodal displacements, slope and 
displacement curvature) can be useful for identifying the damage of the beam. It seems that 
the method may be better than a vibration based method that needs more expensive sensors 
and in case of ambient vibration, will have a lot of noise [18]. 

 
5.2. Example 2: An overhanging beam 
 
An overhanging beam with span L=1 m shown in Figure 10 is selected as second example. 

The beam has a square cross-section with dimensions of 0.2×0.2 m. Modulus of elasticity is
210E GPa= . As shown in Figure 11, eight different damage scenarios are considered for the 

beam. The first six scenarios (cases 1-6), include single damage case under concentrated load. 
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For damage scenarios 1-6, three different load cases as given in Tables 4-6 are considered. 
The Table 4, Table 5 and Table 6 are used to scenarios 1-4, scenario 5 and scenario 6, 
respectively. 

 The seventh and eighth scenarios (case 7 and 8) are considered for single and multiple 
damages under uniformly distributed load, respectively. In forth scenario (case 4) noise effect 
is also considered. For studying the number of measurement point effect on the efficiency of 
damage detection method, two different finite element meshes are taken in scenarios 1-8. The 
first mesh consists of 10 elements (damage scenarios 1-8, except scenario 5, the length of 
each element is equal 0.1L) and the second one includes 20 elements (damage scenario 5, the 
length of each element is equal 0.05 L). The influence of amount of load is also considered. 
The scenario 6 is similar to scenario 1 excluding the value of the load has been two times. In 
this example, the 3% noise is considered in forth scenario (case 4).  

The values of mnSRBI for damage scenarios 2 (with 10 elements) and 5 (with 20 elements) 
are shown in Figures 12 (b) and 12 (e), respectively. The results show that the location of 
damage is identical in both cases. This means that the number of measurement points cannot 
affect the results considerably, while the most important factor for determining the damage 
location is the accuracy of the measurement data. As shown in Figure 12, the mnSRBI in the 
vicinity of some elements is maximal and it indicates that there is damage in the elements.  

In order to examine the effect of the amount of load on damage detection method, the 
results of scenario 1 (use table 4) and scenario 6 (use table 6) are compared in Figures 12 (a) 
and (f), respectively. As can be observed, the  mnSRBI is the same for both the cases. It can 
be theoretically concluded that the use of mnSRBI dose not depend on the value of load.  

The values of mnSRBI for damage scenarios 7-8 are shown in Figures 12 (g) and (h), 
respectively. The results show that the damage index can locate the single and multiple 
damages under uniformly distributed load correctly. 

Figure 12 (d) show mnSRBI for the damage scenario 4 considering 3% noise. By 
comparing this result with that shown in Figure 12 (a) for scenario 1, it can be concluded that 
there is a good compatibility between them. In other words, considering the measurement 
noise has a negligible effect on the performance of damage detection method. 

 
        
             Figure 10. (a) Geometry of the overhanging beam                 (b) Cross-section of the beam 

 
 
 

Table 4. Static load cases applied to the overhanging beam (scenarios 1-4) 

 
 
 
 
 

Case 3 (KN) Case 2 (KN) Case 1 (KN)  
Node 

 Py Py Py 
0 0 -10 3 
0 -10 0 6 

-10 0 0 9 
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Table 5. Static load cases applied to the overhanging beam (scenario 5) 

 
Table 6. Static load cases applied to the overhanging beam (scenario 6) 

 

 
Case-1   Reduction in h3=10%                              Case-2   Reduction in h4=20% 

 
Case-3   Reduction in h6=30%                       Case-4   Reduction in h3=10%, noise=3% 

 
Case-5    Reduction in h8=10%                           Case-6   Reduction in h3=10% 

 
Case-7   Reduction in h3=30%                           Case-8  Reduction in h3=10 & h8=10% 

 
Figure 11.  Eight different damage scenarios for the overhanging beam 

 

Case 3 (KN) Case 2 (KN) Case 1 (KN) 
Node 

Py Py Py  
0 0 -10 5 
0 -10 0 11 

-10 0 0 17 

Case 3 (KN) Case 2 (KN) Case 1 (KN) 
Node 

Py Py Py  
0 0 -20 3 
0 -20 0 6 

-20 0 0 9 
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(a)  Case-1 (damaged element=3, reduction in h=10%)     (b) Case-2 (damaged element=4, 

reduction in h=20%) 

 
(c)  Case-3 (damaged element=6, reduction in h=30%)     (d) Case-4 (damaged element=3, 

reduction in h=10%, noise=3%) 

(e)  Case-5 (damaged element=8, reduction in h=10%)  (f) Case-6 (damaged element=3, reduction in  
                                                                                           h=10%)  

 
(g) Case-7 (damaged element=3, reduction in h=30%)   (h) Case-8 (damaged elements=3&8,  
                                                                                                reduction  in h=10%) 

 
Figure 12. Damage localization in overhanging beam for damage cases 1-8 
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5.3. Example 3: An indeterminate beam 
 
An indeterminate beam with span L=1 m shown in Figure 13 is selected as the third 

example. The beam has a square cross-section with dimensions of 0.2×0.2 m. Modulus of 
elasticity is 210E GPa= . As shown in Figure 14, six different damage scenarios are 
considered for the beam. The first four scenarios (cases 1-4), include single damage case 
under concentrated load. For damage scenarios 1-4, three different load cases as given in 
Table 7 are considered.  

The fifth and sixth scenarios (case 5 and 6) are considered for single and multiple damages 
under uniformly distributed load, respectively. In forth scenario (case 4) noise effect is also 
considered. In this example, 3% noise is considered. 

 

 
 

(a)                                                                                                       (b) 
Figure 13. (a) Geometry of the indeterminate beam; (b) Cross-section of the beam 

 
Table 7. Static load cases applied to the indeterminate beam (scenarios 1-4) 

 

 
Case-1   Reduction in h2=20%                                Case-2    Reduction in h3=30% 

 
Case-3   Reduction in h8=10%                                Case-4    Reduction in h2=20% – noise=3% 

 
Case-5   Reduction in h3=10%                     Case-6   Reduction in h3 & h8=10% 

 
Figure 14.  Six different damage scenarios for the indeterminate beam 

Case 3 (KN) Case 2 (KN) Case 1 (KN) Node 
Py Py Py  
0 0 -10  3 
0 -10  0 5 
-10  0 0 9 
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As shown in Figure 15, the mnSRBI in the vicinity of some elements is maximum and it 

indicates that there is damage in the elements. 
The values of mnSRBI for damage scenarios 1-6 are shown in Figures 15 (a)-(f), 

respectively. The results confirm that the damage index can correctly determine the location 
of the single and multiple damages under concentrated and uniformly distributed load. Figure 
15 (d) show mnSRBI for the damage scenario 4 considering 3% noise. Comparing this result 
with that shown in Figure 15 (a) for scenario 1, it can be concluded that the method can 
accurately locate the damage when considering noise. 

 

  
(a) Case-1 (damaged element=2, reduction in h=20%)    (b) Case-2 (damaged element=3, reduction  
                                                                                                  in h=30%) 

 
(c) Case-3 (damaged element=8, reduction in h=10%)  (d) Case-4 (damaged element=2, reduction in      
                                                                                               h=20%, noise=3%) 

 
(e) Case-5 (damaged element=3, reduction in h=10%) (f) Case-6 (damaged element=3 & 8, reduction  
                                                                                              in h=10%) 

 
Figure 15.  Damage localization in indeterminate beam for damage cases 1-6 
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6. Conclusion 
 
In this paper, a crack identification method for beams using an efficient damage index 

based on data extracted from a static analysis has been investigated. The effects of many 
parameters may affect the efficiency of the method with considering a simply supported 
beam, an overhanging beam and an indeterminate beam as test examples have been 
considered. Based on the numerical studies, the following results can be concluded: 

1) Static responses obtained from the static analysis are sensitive to the stiffness 
reduction (moments of inertia). In other words, it has characteristics from damaged 
area and can be used as a good indicator for damage detection. It may fairly be better 
than a dynamical method that needs more expensive instruments. 

2) As achieved from the numerical results, the number of measurement points is not very 
important, however, the most important factor is the accuracy of measurement. 
However, for increasing the accuracy of the proposed indicator, we suggest that the 
number of elements shouldn’t be very low.  

3) The proposed damage index does not depend on the location and amount of the static 
load and it can be effectively used for locating the single and multiple damage cases. 
However, the magnitude of load plays an important role in practical work. In fact, the 
measurement devices may not be able to measure the static responses, when the 
applied loads are very small. 

4) Measurement noise has a negligible effect on the efficiency of the proposed index for 
damage detection.  
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